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This work presents a detailed and quantitative quantum description of the ultrafast response of
arrayed waveguide gratings �AWG� illuminated with relatively intense short pulses of light. This is
achieved with no more mathematical or conceptual complexities than that required by a classical
description. The presented approach is based on the phenomenological interpretation of the photon,
that is, a photon is what produces a “click” in a photodetector. This phenomenological approach was
combined with the application of Feynman’s rules for describing interference and Bohr’s
correspondence principle, i.e., quantum theory should somehow converge in the limit with the
classical description of the interference phenomena. This basic approach reveals that, in apparent
opposition to wide-held beliefs, especially designed AWGs can be used to produce interference in
conditions where the “which-path” information is available. © 2010 American Institute of Physics.
�doi:10.1063/1.3512860�

I. INTRODUCTION

Arrayed waveguide gratings �AWG� are integrated-
optics devices commonly used in wave division multiplexing
optical networks.1 AWGs are also suited for more advanced
applications including super continuum filtering2,3 and shap-
ing ultrafast pulses of light.4–6 This broad range of applica-
tions is the driving force behind the continuing interest in the
design and function of these devices.7–10 From a physics
point of view, AWGs are wave-front-division-based spec-
trometers designed and fabricated for a basic function: to
spectrally decompose the electromagnetic radiation incident
in the input, resulting in light with different frequencies com-
ing out of distinct outputs of the device.11 This capability
extends to the extreme case where an AWG is illuminated
with pulses of light so short that pulses do not overlap at all
in the common path of the spectrometer.5,6 This physically
interesting situation has been previously studied using clas-
sical approaches.5,6,11 The author presents in this work, for
the first time, a quantum description of the interference in
AWGs illuminated with relatively intense ultrafast pulses of
light. In these experiments4–6 single photon events are not
measured; however, it is interesting to analyze the experi-
mental results, focusing the attention in the quantum nature
of light. It is reasonable to attempt this analysis because,
according to Bohr’s correspondence principle,12 classical op-
tics should be an extreme instance of the more precise quan-
tum description of light. A full quantum electrodynamics
�QED� �Refs. 13 and 14� description of diffraction of ultra
short pulses of light by an AWG would be unnecessarily
complicated. Instead, the author presents a phenomenologi-
cal but rigorous, quantum description based on the use of the
most simple of the three common interpretations of the
photon,15 that is, a photon is what produces a “click” in a
photodetector. In addition, Feynman’s basic quantum rules
for describing interference were used. These rules were sum-

marized by Feynman as �1� the probability of an event is
given by p= ���2, where � is a complex number which is
called probability amplitude and �2� when an event can occur
in several alternative ways, the probability amplitude for the
event is the �properly normalized to one� sum of the prob-
ability amplitudes for each way considered separately.16

These basic ideas were chosen because this approach allows
one to explore the classical limit of the quantum theory with-
out more mathematical or conceptual complexities than that
required by a classical description. Nevertheless, this basic
phenomenological approach reveals that, in apparent opposi-
tion to wide-held beliefs, especially designed AWGs can be
used for observing interference in conditions where the
“which path” information is available.17

This paper is organized as follows: In Sec. II, a brief
review of the classical description of the diffraction by a
single rectangular slit is presented. Based on the classical
results and the application of the correspondence principle, a
phenomenological quantum description of the diffraction by
a single rectangular slit is presented in Sec. III. In Sec. IV, a
phenomenological quantum description of diffraction by a
grating is worked out using the superposition principle; a
generalization applicable to AWGs is presented in Sec. V. A
brief discussion about the relation between interference and
which-path information in a quantum description is made in
Sec. VI, and the application of these ideas to the case of an
AWG illuminated with ultrafast pulses of light is presented
in Sec. VII. In Sec. VIII, the author discusses how the oc-
currence of interference, in an AWG illuminated with pulses
of light so short that pulses do not overlap at all in the com-
mon path of the spectrometer, does not violate the uncer-
tainty principle.16 Finally, the conclusions of this work are
given in Sec. IX.

II. CLASSICAL DESCRIPTION OF DIFFRACTION BY A
SINGLE RECTANGULAR SLIT

Figure 1 shows the schematic of the transversal section
of a typical experimental arrangement used to observe thea�Electronic mail: luis.grave-de-peralta@ttu.edu.

JOURNAL OF APPLIED PHYSICS 108, 103110 �2010�

0021-8979/2010/108�10�/103110/11/$30.00 © 2010 American Institute of Physics108, 103110-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp

http://dx.doi.org/10.1063/1.3512860
http://dx.doi.org/10.1063/1.3512860
http://dx.doi.org/10.1063/1.3512860


diffraction of light by a multiple-slit. In this section it is
supposed that all slits are closed except the central one. A
two-dimensional �2D� array of output waveguides �see Fig.
2�a��, placed at the focal plane of a convergent lens with
focal length �f�, is used to collect the Fraunhofer diffraction
pattern that corresponds to the rectangular slit placed at a
distance f in front of the lens. A 2D array of photodetectors
is coupled to the output waveguides to register and record
the pattern. When the slit is illuminated by a monochromatic
wave traveling in the z-axis direction, i.e., impinging perpen-
dicularly to the object plane containing the slit, the time-
averaged intensity �I� in the diffraction pattern collected at
the focal plane is described by the following expressions:18,19

I�xf,yf� = 1
2c�o�U�xf,yf��2, �1�

with

U�xf,yf� = 1
i�f FT�U�xo,yo�� fx→�xf/�f�,fy→�yf/�f�, �2�

and

FT�U�xo,yo�� fx→�xf/�f�,fy→�yf/�f�

=� � U�xo,yo�e−i�2�/�f��xfxo+yfyo�dxodyo, �3�

where FT means 2D Fourier-transform, c is the speed of the
light, �o and � are the vacuum electrical permittivity and the
wavelength of the light, respectively; i is the imaginary unit,

the integration is over the object plane, and the subindices o
and f refer to the object and focal planes, respectively. The
optical disturbance U�R� at a point R is a complex function.
It is related to the amplitude of the electric field �E� by the
following relation:19

E�R,t� = Re�U�R�e−i2��t� , �4�

where v is the frequency of the light and Re is shorthand
notation for the real part of. This discussion will consider
light to be linearly polarized; thus, E�R , t� can be described
by a scalar harmonic function with amplitude equal to �U�.
For a rectangular slit, the optical disturbance at the object
plane is given by the following expression:19

U�x0,y0� = Eorect� xo

Lx
	rect� yo

Ly
	 , �5�

where Eo is the constant value of the amplitude of the elec-
tric field at the slit, and Lx and Ly are the width of the slit in
the horizontal and vertical directions, respectively. The func-
tion rect��� and its Fourier-transform sinc�f�� are defined in
Appendix A. Substituting �5� into �2� results:

U�xf,yf� =
EoLxLy

i�f
sinc� Lx

�f
xf	sinc� Ly

�f
yf	 . �6�

Thus, the time-averaged intensity of the diffraction pattern is
obtained by substituting �6� into �1�:

I�xf,yf� =
1

2
c�oEo

2
�LxLy

�f
	2

sinc2� Lx

�f
xf	sinc2� Ly

�f
yf	� .

�7�

A detailed discussion of the characteristics of the diffraction
pattern described by expression �7� can be found
everywhere.18,19 The total electromagnetic power �P� arriv-
ing at the focal plane is given by the following integral:

P =� � I�xf,yf�dxfdyf . �8�

Substituting �7� in �8� results in:

P = � 1
2c�oEo

2�LxLy . �9�

The right term of expression �9� is the total electromagnetic
power passing through the slit. As a consequence, as ex-
pected, the total power passing through the slit equals the
total power reaching the focal plane. Assuming that the out-
put waveguides have a core with an effective transversal area
Ap of a few �m2, and that there is a well designed experi-
mental set up where smooth diffraction patterns are obtained,
the intensity should have an approximately constant value
along the core of any output waveguide in the 2D array. In
this approximation, assuming no coupling losses and ideal
photodetectors with 100% efficiency, the time-averaged
power P�xf

j ,yf
k� collected by the waveguide �j ,k� that is cen-

tered at the point �xf
j ,yf

k�, and registered in the photodetector
�j ,k�, can be calculated as:

P�xf
j,yf

k� =� �
wg�j,k�

I�xf,yf�dxfdyf � ApI�xf
j,yf

k� . �10�

FIG. 1. Schematics of the transversal section of a typical experimental ar-
rangement for observing diffraction by a grating.

FIG. 2. Schematics of �a� a 2D array of waveguides and �b� a volume AWG.
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III. PHENOMENOLOGICAL QUANTUM DESCRIPTION
OF DIFFRACTION BY A SINGLE RECTANGULAR
SLIT

A quantum description of diffraction is required when
the slit is illuminated with feeble light or single photons. In
these experiments, the diffraction pattern is formed gradually
in the object plane by the accumulation of numerous clicks,
i.e., individual photon-detection events.17 In a quantum pic-
ture, when the slit is uniformly illuminated with monochro-
matic light of frequency �, the time-averaged power distri-
bution registered by the array of detectors shown in Fig. 1
can be calculated using the following expression:

P�xf
j,yf

k� = Nh�p�xf
j,yf

k� , �11�

where N is the average photon rate passing through the slit, h
is Planck’s constant, and p�xf

j ,yf
k� is the probability of the

photon-detection event: the registration of the arrival of a
photon �a click� at the �j ,k�-detector, which is coupled to the
output waveguide centered at the point �xf

j ,yf
k� in the focal

plane. Experimentally, p�xf
j ,yf

k� is determined by the fraction
of the N photons, passing through the slit per unit of time,
that are registered by the �j ,k�-photodetector. Assuming no
coupling losses and ideal photodetectors with 100% effi-
ciency, N is also the average photon rate arriving at the 2D
array of photodetectors. The quantum description of diffrac-
tion is based on the concept of probability amplitude.16 Fol-
lowing Feynman’s first rule, the probability p�xf

j ,yf
k� of col-

lecting a photon at the waveguide �j ,k� is given by the
square of the absolute value of the probability amplitude
��xf

j ,yf
k�. A first principle calculation of � may be challeng-

ing. Fortunately, it is simpler in this case to invoke Bohr’s
correspondence principle.12 Classical and quantum descrip-
tions of diffraction by a rectangular slit should give equal
results when the amplitude of the input plane wave is rela-
tively large; i.e., when a large number of photons arrive at
the focal plane. In the quantum picture, the time-averaged
power distribution registered by the 2D array of photodetec-
tors can be calculated using the following expression:

P�xf
j,yf

k� = Nh����xf
j,yf

k��2. �12�

It is useful to introduce an auxiliary function 	�xf ,yf�, con-
tinuous in the variables xf ,yf, and defined by the following
relation:

� �
wg�j,k�

�	�xf,yf��2dxfdyf � Ap�	�xf
j,yf

k��2

= ���xf
j,yf

k��2, �13�

where the integration is over the transversal section of an
output waveguide and 	 has dimensions of probability am-
plitude density �probability amplitude per unit of area�. From
�12� and �13� and comparing with �10� follows that:

I�xf,yf� = Nh��	�xf,yf��2. �14�

Expression �14� is formally similar to expression �1�; how-
ever, unlike the classical optical disturbance U, the probabil-
ity amplitude density 	 must be normalized to the unity:

� � �	�xf,yf��2dxfdyf = 1. �15�

Expression �15� states that if a photon passes through the slit,
a click will be registered in some photodetector. Comparing
expressions �14� and �7� and using Bohr’s correspondence
principle results:

Nh���	�xf,yf��2 = �1

2
c�oEo

2LxLy�


 LxLy

��f�2sinc2� Lx

�f
xf	sinc2� Ly

�f
yf	� .

�16�

From expression �9�, the factors in curly brackets on both
sides of �16� are equal to the total power passing through the
slit. As a consequence:

�	�xf,yf��2 =
LxLy

��f�2sinc2� Lx

�f
xf	sinc2� Ly

�f
yf	 . �17�

Knowing �	�2, one can use Feynman’s first rule and expres-
sions �11�–�13� to find that the probability of collecting a
photon in the waveguide �j ,k� is given by the following ex-
pression:

p�xf
j,yf

k� =
ApLxLy

��f�2 sinc2� Lx

�f
xf

j	sinc2� Ly

�f
yf

k	 �18�

Expression �17� determines 	 except for an arbitrary phase
factor. Using a value of zero results:

	�xf,yf� =
�LxLy

�f
sinc� Lx

�f
xf	sinc� Ly

�f
yf	 . �19�

As expected, 	 is completely determined by the geometry of
the slit-lens arrangement and the wavelength of the light. 	
given by �19� satisfies the normalization condition �15�. A
direct comparison of �19� and �6� allows one to obtain the
following relation between the quantum probability ampli-
tude density 	�xf ,yf� and the values of the classical optical
disturbance U�xf ,yf� in the focal plane:

	�xf,yf� = �U�xf,yf� , �20�

where � is the dimensional constant:

� =
i

Eo
�LxLy

. �21�

Relation �20� states that, in the classical limit, the probability
amplitude per unit area of registering a click at the point
�xf ,yf� in the focal plane of the experimental set up �shown
in Fig. 1� is directly proportional to the optical disturbance
value at that point. This provides a way to calculate the prob-
ability distribution of clicks in the 2D array of photodetectors
in the classical limit, without having to rely on the math-
ematical subtleness of more elaborated quantum theories of
photons.13–15 In this sense, satisfying relation �20� can be
seen as a mandatory test for any successful quantum theory
of photons. Expressions �11�–�13� provide a phenomenologi-
cal definition of 	. It is worth noting that this definition does
not identify the distribution of probability amplitude densi-
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ties 	�xf ,yf� as the values resulting from evaluating some
quantum field or quantum wave function ��x ,y ,z� at the
focal plane. Independent from the existence or nonexistence
of a photon wave function,15,20 and independent from the
formulation of the quantum field theory,13,14 calculated val-
ues of 	 using any quantum theory of photons �in the clas-
sical limit� should match the values of 	 calculated using
expression �20�. The probability distribution given by �18� is
stationary because the incident light is monochromatic, i.e.,
all photons have the same energy h�. Expression �4� shows
the temporal dependence of the optical disturbance. Conse-
quently, in the case of monochromatic illumination, the tem-
poral dependence of the probability amplitude density is
given by the following expression:

	��xf,yf,t� = 	�xf,yf�e−i2��t. �22�

IV. PHENOMENOLOGICAL QUANTUM DESCRIPTION
OF DIFFRACTION BY A GRATING

The quantum description of the diffraction by a grating
with M +1 rectangular slits and period a �see Fig. 1� can be
done in terms of probability amplitudes using the superposi-
tion principle contained in Feynman’s second rule.16 Assum-
ing uniform illumination of the grating, a photon has an
equal probability �1 / �M +1�� to pass through any of the slits.
Consequently, the probability amplitude density �properly
normalized to one� of registering a photon in the focal plane
at the point �xf ,yf� after passing through the multiple-slit is
given by the following expression:

	g�xf,yf� =
1

�M + 1
�	�xf,yf� + �

k=1

M/2

�	+k�xf,yf�

+ 	−k�xf,yf��� , �23�

where 	k is the probability amplitude density of registering
a photon at point �xf ,yf� in the focal plane after passing
through the kth slit of the top �+� or bottom ��� half of the
grating. The simplest way to find the expressions describing
these probability amplitude densities is to calculate the cor-
responding classical optical disturbances U+k and U−k, and
then use relation �20�. Each slit is shifted by ka in respect
to the central one; thus:

Uk�x0,y0� = U�x0,y0  ka� . �24�

As a consequence, substituting �24� into �2�, using the shift
property of the Fourier-transform,19 and then using �20� re-
sults in:

	k�xf,yf� = 	�xf,yf�ei�2�/�f�yfka. �25�

Expression �25� permits one to rewrite �23� in the following
way:

	g�xf,yf� =
1

�M + 1
	�xf,yf���yf� , �26�

where

��yf� = 1 + �
k=1

M/2

�e+i2k� + e−i2k��, � =
�

�f
yfa . �27�

As shown in Appendix B, the sum in expression �27� can be
evaluated exactly. This results in a simple expression for 	g:

	g�xf,yf� =
1

�M + 1
	�xf,yf�g�yf� , �28�

with

g�yf� =
sin��M + 1���

sin �
. �29�

The total photon rate through the grating is �M +1�N; thus,
substituting N by �M +1�N and 	 by 	g in expression �14�
allows one to obtain the time-averaged intensity distribution,
at the focal plane, corresponding to a grating illuminated by
a relatively intense input beam:

Ig�xf,yf� = Nh��	�xf,yf��2g2�yf� . �30�

In expression �30�, the last factor corresponds to the interfer-
ence associated with the superposition of M +1 probability
amplitude densities. Using the following property:18

lim�→m�

sin��M + 1���
sin���

=  �M + 1�,

m = 0,  1,  2, . . . . �31�

The positions of the interference maxima are given by the
following expression:18

� = m� ⇒ yf = m
�f

a
, m = 0,  1,  2, . . . . �32�

In addition, a comparison of �30� and �14� reveals that a
grating produces interference maxima �M +1�2 times more
intense than the intensity maximum in a single slit diffraction
pattern.18 Knowing �	g�2, one can use Feynman’s first rule
and expressions �11�–�13� to find that the probability distri-
bution corresponding to expression �30� is given by the fol-
lowing expression:

pg�xf
j,yf

k� =
ApLxLy

�M + 1���f�2sinc2� Lx

�f
xf

j	sinc2� Ly

�f
yf

k	



sin2��M + 1���
sin2 �

. �33�

Expression �33� reduces to �18� for M =0. Like the probabil-
ity distribution given by �18�, pg is stationary because the
incident light is monochromatic, i.e., all photons have the
same energy h�. As a consequence, the temporal dependence
of the probability amplitude density is given by the following
expression:

	g��xf,yf,t� = 	g�xf,yf�e−i2��t. �34�

It is worth noting that the probability distribution described
by expression �33�, which was obtained in the classical limit
of a quantum description, is still valid when the multiple-slit
is illuminated with feeble light or single photons.17 This is in
agreement with the absence of N in expression �33� and with
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the famous Dirac’s dictum: “each photon then interferes only
with itself.”21,22

V. PHENOMENOLOGICAL QUANTUM DESCRIPTION
OF DIFFRACTION BY AN AWG

Gratings are often used in spectroscopy applications be-
cause the position of the interference maxima when m�0
depends on the frequency of the illuminating light. However,
a bright zero-order diffraction is always formed in the center
of the diffraction pattern �yf =0� independent of the light fre-
quency. This sometimes undesirable feature can be avoided
by using an AWG.1 Figure 2�b� shows a schematic of a vol-
ume AWG formed by a set of curved slab waveguides. When
the input face of the AWG is illuminated by a plane wave,
light is coupled uniformly to the set of slab waveguides and
radiated through the output face of the AWG, which is basi-
cally a grating formed by M +1 rectangular slits. However,
unlike common gratings, there is phase difference between
light emitted by consecutive output slits equal to:

�� = 2�
�L

�/n
, �35�

where n is the effective refractive index of the slab wave-
guide and n�L is the optical path length difference between
consecutive slab waveguides. AWGs are designed to produce
a diffraction pattern where the md-order interference maxi-
mum �md�1� appears at the center of the pattern when the
AWG is illuminated with light of wavelength �o. This is
achieved when �L is given by the following expression:1

�L = md
�o

n
. �36�

By using �35� and �36� can be rewritten in the following
way:

�� = 2�md
�o

�
= 2�md

�

�o
. �37�

Figure 3 shows the schematic of the transversal section of an
experimental arrangement used to observe the diffraction of
light by an AWG. The quantum description of the diffraction
by an AWG with M +1 slab waveguides can be done by
following the same steps described in Sec. IV. In order to
include the phase shift given by expression �37�, expression

�24� should be modified in the following way:5,6

Uk�x0,y0� = U�x0,y0  ka�e−i2�kmd��/�o�. �38�

Expression �38� assumes that for the design frequency ��o

=�o /c� the phase of the optical disturbance is equal to zero
in the middle waveguide of the grating �k=0�. The phase
changes by �� from one waveguide to the next. Now, sub-
stituting �38� in �2�, using the linearity and shift properties of
the Fourier-transform,19 and then using �20� results in:

	k�xf,yf,�� = 	�xf,yf�ei�2�/�f�yfk�a+md��f/yf���/�o��. �39�

Substituting �39� into �23� results in �26� and �27� but now
with:

� = �� =
�

�f
yf�a + md

�f

yf

�

�o
	 . �40�

Consequently, expressions �28�–�30�, �33�, and �34� are still
valid for AWGs after substituting � by ��. For md=0, �
given by �40� reduces to its value in �27�. This is in agree-
ment with the fact that an AWG with �L=0 produces the
same diffraction pattern that a common grating does. For
AWGs, the positions of the interference maxima are given by
the following expression:

�� = m� ⇒ yf = �m − md
�

�o
	�f

a
,

m = md,md  1,md  2, . . . . �41�

Well designed AWGs work in the m=md diffraction order. In
this case, for �=�o ,yf =0, i.e., the design frequency is col-
lected at the center of the AWG interference pattern. The
useful spectral range of an AWG is determined by its free
spectral range �FSR�:1,4–6

FSR =
c/n
�L

=
�o

md
. �42�

This means that if the AWG is illuminated with light of dif-
ferent frequencies, an interference maximum will be formed
at yf =0 for all the frequencies that differ from the design
frequency by a multiple of FSR. This property can be easily
confirmed using �41� and �42�. AWGs are used in spectros-
copy applications because simultaneous illumination with
several input frequencies in the range �o−FSR /2����o

+FSR /2 results in several interference maxima spatially
spread in the spatial range – �f /2a�yf ��f /2a at the object
plane.

VI. INTERFERENCE AND WHICH-PATH INFORMATION

The dependencies on yf
k of two different probability dis-

tributions, calculated using expressions �33� and �40� for xf
j

=0, are plotted in Fig. 4. The parameter values used were
Ap=25 �m2, Ly =5 �m, �=�o=1.56 �m, a=20 �m, f
=3 mm, and md=3876. These parameter values match the
parameters of the especially designed AWG used in previ-
ously published experiments.5,6,11 This allows one to com-
pare the simulation results presented in this work with real
experimental data. The discontinuous curve in Fig. 4 corre-
sponds to the diffraction by a single slit �M =0�. In this case,

FIG. 3. Schematics of the transversal section of an experimental arrange-
ment for observing diffraction by an AWG.
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the probability distribution exhibits a broad central peak. In-
side of the central peak, p�xf

j =0,yf
k� decreases smoothly and

monotonically from the center of the diffraction pattern to
the first diffraction minima at �yf

k��1 mm. The continuous
curve in Fig. 4 corresponds to the diffraction by an AWG
with 21 slab waveguides �M =20�. Seven well-defined peaks
are observed in the same region occupied by the broad cen-
tral peak of the discontinuous curve. These peaks are signa-
ture features of interference because they cannot be obtained
by adding several single slit diffraction patterns. If all the
slab waveguides of the AWG except the central one were
obstructed, every incoming photon would leave the AWG
through the central slit. The diffraction pattern at the focal
plane would correspond to the diffraction by a single slit,
which lacks the signature features of interference. In con-
trast, if all the slab waveguides of the AWG were open, in-
terference fringes would be clearly observed in the diffrac-
tion pattern. In AWGs, photons traversing distinct
waveguides of the grating take different times to arrive at the
2D array of detectors; thus, one could think that measuring
the time of flight of the photons could reveal which path a
photon took. However, this is not possible in experiments
where an AWG is illuminated with monochromatic light be-
cause a simple harmonic wave is extremely long and feature-
less. The absence of temporally distinguishable features in
the input wave impedes determining whether the click that
occurred at time tc in the photodetector �j ,k� was produced,
for instance, by a photon that entered at time t1 in the AWG
and traversed the AWG through the shortest waveguide, or
by another photon that entered at time t2� t1 in the AWG and
traversed the AWG through the longest waveguide. It is com-
mon in specialized quantum mechanics literature to summa-
rize these facts as follows: “a perfect interference pattern
�equally energetic photons arrive in specific places at the
focal plane� arises only when there is no possible way of

finding out which path the particle took.”17 Due to practical
reasons, two-path experimental arrangements are often used
in interference experiments with monochromatic feeble light.
Instead of an AWG, double-slit23,24 or Mach–Zehnder inter-
ferometer arrangements17,25,26 are commonly used as the
two-path arrangements. In addition, the 2D array of photo-
detectors is often substituted by a single photodetector. The
single photodetector is either translated through the area cov-
ered by the diffraction pattern,23,24 or the path length of one
arm of the interferometer is changed.25,26 Occurrence of in-
terference is often established when the measured probability
distribution of clicks contains the characteristic spatial fea-
tures of interference. It is implicit in the summary-phrase
cited above that the photodetectors are adequate for register-
ing the perfect interference pattern that arises when there is
no possible way of finding out which path the particle took.
This means that photodetectors or scanning step sizes should
be small enough to resolve the interference fringes. The
width of the peaks in the continuous curve in Fig. 4 de-
creases when the number of different optical paths in the
experimental arrangement increases.18,19 In order to resolve
these peaks, photodetectors or scanning step sizes should be
much smaller than the width of the peaks. Evidently, this
requirement is easier to achieve in two-path experimental
arrangements. A second consideration about the photodetec-
tors is that they should not be the reason why perfect inter-
ference patterns occur. Assuming that the parameters of the
photodetector arrangement have been well chosen, when all
slab waveguides are open the measured probability distribu-
tion of clicks at the focal plane should be similar to the
continuous curve in Fig. 4. However, when all slab
waveguides except the central one are obstructed, the distri-
bution should be similar to the discontinuous curve in Fig. 4.
This means that in absence of propagation losses in the hy-
pothetical experimental arrangement show in Fig. 3, the
measured probability distribution of clicks should be inde-
pendent of the length of the output waveguides, i.e., the
number and energy of the photons that enter any output
waveguide should be equal to that of the ones that make the
corresponding detector to click. It is also implicit in the
summary-phrase cited above that the “possible ways of find-
ing out which path the particle took” include the possibility
of knowing, even without actual experimental confirmation,
which path the photon responsible for a particular click
took.25,26 A possible way to acquire this knowledge could be
by replacing the photodetector with another measurement de-
vice that does not disturb the original experiment25 but does
reveal the which-path information. For instance, a free-space
auto-correlation apparatus may be used to try to determine
time of flight values.5,6 If the which-path information is ob-
tained using such a device, then one should expect that no
interference pattern will arise when the experiment is re-
peated with the original photodetector. In the opposite case,
if it was impossible to obtain the which-path information,
one should expect that a perfect interference pattern will
arise in the original arrangement. It is worth noting that only
two static detectors are enough to distinguish between the
cases M =0 and M �1. The inset in Fig. 4 shows a possible
arrangement of two photodetectors designed to distinguish

FIG. 4. Dependence on yf
k of the calculated probabilities for xf

j =0. Diffrac-
tion by �a� a single slit �M =0, discontinuous line� and �b� 21 slits �M =20,
continuous line�. Inset: A and B indicate the positions of two detectors.
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between the two cases using a source that emits light with
the design frequency �o. Photodetector A is placed at the
central point of the diffraction pattern. Photodetector B is
placed horizontally at xf

j =0 and vertically at the midpoint
between the m=md and m=md+1 interference maxima �yf

k

=�f /2a�. If all the slab waveguides of the AWG except the
central one were obstructed, then both photodetectors would
register a similar number of clicks �A1�B1 /2�. However, if
all the M +1 slab waveguides of the AWG were open, pho-
todetector A would count a much larger number of clicks
than photodetector B�AM+1�A1�BM+1�B1�. In addition,
the average number of clicks registered by the photodetec-
tors would be time-independent due to the stationary charac-
ter of the probability distribution �33�. If the frequency of the
input light was not �o, it would be necessary to change the
locations of the two photodetectors because the diffraction
pattern would shift vertically with respect to the one corre-
sponding to �=�o. For instance, for �=�o+FSR /2, an inter-
ference maximum �minimum� would form in the position of
the photodetector B �A�. As a consequence, if the photode-
tectors were not switched, the relation between their mea-
surements would be BM+1�B1�AM+1�A1. It is of particu-
lar importance to note that this method of interference
recognition is appropriate for experiment using monochro-
matic or narrow band light. However, this method is not
appropriate for experiments using a broad band source of
light because minima of interference corresponding to a par-
ticular frequency may be masked by maxima of interference
corresponding to another frequency. This problem is particu-
larly acute in two-path experimental arrangements, where the
spatial interference fringes are relatively broad when com-
pared with those in multiple-path based experiments.

There is an alternative method for demonstrating the oc-
currence of multiple-slit interference. As it will become clear
in Sec. VI, this second method is well-suited for experiments
with broad band illumination. The method consists of substi-
tuting photodetectors A and B with two spectrometers. In
addition, the AWG should be illuminated successively using
two monochromatic light sources that have two different,
adequately chosen, frequencies. For instance �using the ex-
perimental set up shown in Fig. 3, with the spectrometers A
and B placed as shown in the insert in Fig. 4� if only the
central slab waveguide was open and the AWG was succes-
sively illuminated by monochromatic light with frequencies
�1=�o and �2=�o+FSR /2, then both spectrometers would
register the successive arrival of photons having energies
equal to h�1 and h�2. However, if all the slab waveguides
were open, spectrometer A would only register the arrival of
photons with energy h�1 while spectrometer B would only
register the arrival of photons with energy h�2. It has been
assumed in these arguments, implicitly, that measured spec-
tra in A and B have at most a single narrow peak each, and
that a spectral shift can be observed by comparing the spec-
tral position of the peaks, i.e.,:

��peack � FSR/2, �43�

where ��peack is the width of the peaks. The temporal depen-
dence of the optical signal, which comes out from the AWG
and arrives at the external spectrometer, can be obtained

from the measured spectrum with a simple Fourier transform
operation.4–6 The Fourier transform of a single narrow peak
is a single long pulse of duration �tsp, given by the following
expression:

�tsp � 1/��peack � 2/FST = 2�t , �44�

where �t is the time delay corresponding to the difference in
optical path between consecutive slab waveguides of the
AWG:4–6

�t =
�L

c/n
=

1

FSR
. �45�

The lack of internal structure in the single long pulse im-
pedes to determine which slit photons arriving at the external
spectrometer passed through. Consequently, one can rephrase
the common saying about the relation between interference
and which-path information in the following way: a perfect
interference pattern �photons with different energies arrive in
distinct specific places at the focal plane� arises only when
there is no possible way of finding out which path the photon
took. It is implicit in this rephrasing that the spectrometers
permit one to recognize that photons with different energies
arrive in distinct specific places at the focal plane. This
means that �1� the resolution of the spectrometers should be
enough to resolve the peaks in the measured spectra and �2�
the chosen spectrometers should not be the reason why a
perfect interference pattern arises. That is, assuming that the
parameters of the spectrometers have been well chosen,
when all the slab waveguides except the central one are ob-
structed, spectra measured at positions A and B should be
similar to each other. However, when all slab waveguides are
open, a spectral shift would be observed when comparing the
spectral position of the peaks corresponding to spectra mea-
sured at positions A and B.

Summarizing this section, there are two different meth-
ods for recognizing when interference occurs. The first one,
commonly used in experiments with monochromatic feeble
light,23–26 involves photodetectors to determine, experimen-
tally, that equally energetic photons arrive in specific places
at the focal plane. In these experiments, spatial interference
fringes are recorded. This method is not appropriate for ex-
periments using a broad band source of light because the
spatial interference features may be smeared out due to the
spatial coincidence of minima of interference corresponding
to a particular frequency with the maxima of interference
corresponding to another frequency. The absence of spatial
“wiggles” may be erroneously interpreted as the absence of
interference. The second method involves using at least two
spectrometers to record the output spectra corresponding to
input illumination with at least two different frequencies. Us-
ing the second method, the occurrence of interference is rec-
ognized by determining that photons with different energies
arrive in distinct specific places at the focal plane. This spec-
tral method for identifying the occurrence of interference is
appropriate for experiments with pulsed light. No matter
what method is used, the external instrument used to identify
the occurrence of interference should �1� be able to resolve
the interference features and �2� not be the reason why inter-
ference occurs. There is a wide-held belief that can be sum-
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marized as follows: interference features are present in the
recorded data only when there is no possible way of finding
out which path the photon took. This belief extends to the
point that interference features should disappear as soon as
one knows, even without actual experimental confirmation,
the path of the photon responsible for a particular click. As it
will be shown in Sec. VI, this belief is only justified in the
context of interference experiments using monochromatic or
narrow band light. In these experiments photodetectors are
used and the interference features are spatial interference
fringes.

VII. OBSERVING INTERFERENCE WHILE KNOWING
WHICH SLIT PHOTONS PASSED THROUGH

In apparent opposition to wide-held beliefs regarding the
relation between interference and which-path information, il-
luminating a especially designed AWG with a proper mode-
locked laser allows one to produce interference in conditions
where the which-path information is available.5,6,11 If the la-
ser emits a periodic sequence of relatively intense short
pulses, such that the separation between consecutive pulses
�tR is long enough, i.e.,:

�tR � �M + 1��t . �46�

And if the pulses are short enough, i.e., the pulse width ��
��t, then the AWG will generate a train of M +1 well sepa-
rated pulse-replicas for each input pulse.4–6 Pulse-replicas
have the same spectral composition as the input pulse has but
they have lower intensity. Obviously, all the photons forming
the first �last� pulse-replica passed through the shortest
�longer� slab waveguide; thus, when a proper mode-locked
laser is used as the illumination source, it is, at least in prin-
ciple, possible to know which slab waveguide photons
passed through. Nevertheless, as it will be discussed below,
interference also arises in these conditions, and photons with
a definite energy are only collected in specific output
waveguides in the experimental arrangement shown in Fig.
3. Let’s assume for simplicity in this discussion, that the
length of the pulses is bandwidth-limited, and that pulses are
formed by a superposition of Q+1 monochromatic spectral
components, all with the same intensity and with the follow-
ing frequencies centered at the AWG design frequency �o:

�l = �o + �l, �l = l
FSR

q
, l = 0,  1, . . . ,  Q/2, �47�

where q�Q. Thus, the spectral width of the pulses is:

�� =
QFSR

q
�

1

��
. �48�

It follows from �45� and �48� that the temporal relation ��
��t implies the spectral relation ���FSR. As discussed in
Sec. V, the probability amplitude density 	AWG,� of collect-
ing a photon with energy h�l at the time t in the point �xf ,yf�,
after traversing the AWG, is given by the following expres-
sion:

	AWG,�l
�xf,yf,t� =

e−i2��lt

�M + 1
�	�xf,yf� + �

k=1

M/2

�	+k�xf,yf,�l�

+ 	−k�xf,yf,�l��� . �49�

With 	k and 	 given by �39� and �19�, respectively. When
photons with different energies are passing simultaneously
through the AWG, the probability amplitude density 	AWG

of collecting a photon at the time t in the point �xf ,yf� after
traversing the AWG can be found by superposing the prob-
ability amplitude densities corresponding to different photon
energies, i.e.,:

	AWG�xf,yf,t� =
1

�Q + 1
�

l=−Q/2

Q/2

	AWG,�l
�xf,yf,t� . �50�

Expression �50� can be rewritten in the following, more use-
ful, form:

	AWG�xf,yf,t� = C	�xf,yf�gAWG�yf,t�e−i2��ot, �51�

where C=1 /��Q+1��M +1� is the normalization constant of
	AWG, and:

gAWG�yf,t� = �
l=−Q/2

Q/2

g�yf,�l�e−i2��lt. �52�

With �see expressions �29� and �40��

g�yf,�l� = sin��M + 1���l
�/sin ��l

. �53�

As shown in expression �34�, when a grating or AWG is
illuminated with a single monochromatic wave, the temporal
dependence of 	g� is given by the trivial factor e−2��t. This
trivial time dependence results in the time independence of
�	g��2 and thus, in a stationary diffraction pattern. However,
expressions �51� and �52� show that when an AWG is illu-
minated with enough short pulses of light, a nontrivial tem-
poral dependence given by the function gAWG�yf , t� is present
in addition to the trivial factor e−2��ot. The probability of
registering a click at the focal plane in a position with y
=yf at the time t is proportional to �gAWG�yf , t��2; thus, the
probability distribution of clicks is not stationary when the
AWG is illuminated with short pulses of light. When 1 /q
�1, the sum given by �52� can be approximated by the in-
tegral:

gAWG�yf,t� =� g�yf,�l�e−i2��ltd�l. �54�

Expression �54� shows that there is a temporal Fourier-
transform relationship between the functions gAWG�yf , t� and
g�yf ,�l�. Figure 5 shows two plots of g�yf =constant,�l�
evaluated for the same parameter-values used in Sec. V and
using two different values of yf �top plot, yf =0, and bottom
plot, yf =�f /2a�. These values of yf correspond to the posi-
tions marked A and B in the inset in Fig. 4. Several local
maxima, spectrally separated by ��l=FSR=50 GHz, are
clearly observed in both plots. The function g�yf

=constant,�l� has a periodical sequence of local maxima;
thus, gAWG�yf =constant, t� must have several local maxima
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separated temporally by �t=1 /FSR�20 ps due to the
Fourier-transform relationship �54�. These temporally peri-
odic local maxima correspond to the pulse-replicas discussed
above. This theoretical result is in agreement with experi-
mental results obtained by measuring the temporal response
at a particular output waveguide of an specially designed
AWG with a free-space autocorrelation apparatus.5,6,11 In that
reference, the autocorrelation apparatus was coupled to an
output waveguide. This could neither change the number nor
the energy of the photons arriving at the output waveguide.
In this way it is possible to know, without altering the ex-
perimental conditions of the original experiment,25 which
slab waveguide photons pass through. Nevertheless, interfer-
ence occurs, and, in accordance with experimental
results,5,6,11 the energies of the photons collected in the out-
put waveguide placed at yf =0 are different from the energies
of the photons collected at the waveguide placed at yf

=�f /2a. This statement is supported by the spectral shift in
FSR /2=25 GHz which is clearly visible when comparing
the two plots shown in Fig. 5. At yf =0 �top plot in Fig. 5� the
contribution of the frequencies such that g�yf =0,�l�=0 to
the sum �52� is zero. That is, photons with the following
energies:

EB = h�l, �l � �o + �2l − 1�
FSR

2
,

l =  1, . . . ,  Q/2, �55�

do not arrive at the output waveguide coupled to spectrom-
eter A. In contrast, at yf=�f /2a �bottom plot in Fig. 5� the
contribution of the frequencies such that g�yf =�f /2a ,�l�
=0 to the sum �52� is zero. This means that photons with the
following energies:

EA = h�l, �l � �o + l
FSR

2
, l = 0,  1, . . . ,  Q/2,

�56�

do not arrive at the output waveguide coupled to spectrom-
eter B. Thus, spectrometer A does not register the arrival of
photons with energies EB while the spectrometer B does not
register the arrival of photons with energies EA. That is, in-
terference results in photons with a definite energy arriving
only at specific output waveguides. This is an unequivocal
signature of interference. It is worth noting that interference
would not be recognized if spectrometers A and B were re-
placed with photodetectors. Due to the broad spectrum of the
input pulse, spatial interference maxima corresponding to
some frequencies camouflage spatial interference minima
corresponding to other frequencies. As a consequence, the
number of photons arriving at any output waveguide is ap-
proximately equal but their energies are different in distinct
waveguides. Thus, the distribution of photodetector clicks at
the focal plane of the arrangement shown in Fig. 3 would not
have the spatial features used to identify the occurrence of
interference. This does not mean that interference has not
occurred. This only means that the common method used to
recognize the occurrence of interference, in experiments with
monochromatic or narrow band feeble light,23–26 is not ap-
propriate for experiments using a broad band source of light.

In order to understand the peculiarities associated with
interference experiments with short pulses of light, it is use-
ful to compare the output response of the same AWG to
narrow and broad band light. The broad or narrow character
of the light should be defined with respect to the FSR of the
AWG. Output spectra taken at any output waveguide have a
single peak when the AWG is illuminated with narrow band
light ����FSR�; however, there are multiple peaks in the
spectra when the AWG is illuminated with short pulses of
light having ���FSR �broad band illumination�.4–6 In any
case, observation of a spectral shift between peaks in the
output spectra taken at different output waveguides is a sig-
nature of interference. In addition, it should be noted that the
external spectrometer used to measure the spectra is not the
reason why interference arises in the experimental arrange-
ment. This can be confirmed by obstructing all the slab
waveguides of the AWG except one without introducing any
other change in the experimental arrangement. After doing
that, the output spectra measured using the same spectrom-
eter will not have the characteristics features of interference,
i.e., no spectral shift will be observed comparing spectra
taken at distinct output waveguides. In other words, photons
with different energies are collected at distinct output
waveguides when all the slabs waveguides are open. This
happens if a spectrometer is coupled to each output wave-
guide. This also happens if a free-space autocorrelation ap-
paratus is coupled to each output waveguide. When ��
�FSR, spectra taken at any output waveguide have, at most,
a peak; thus, as discussed in Sec. VI, the temporal signal
arriving at the spectrometer is a single, long, and featureless
pulse. For this reason, it is not possible to determine, using a
free-space auto-correlation apparatus, which slab waveguide
photons passed through to reach the external spectrometer.

FIG. 5. Calculated values of g�yf ,�l� for �a� yf =0 �position A, top plot� and
�b� yf =�f /2a �position B, bottom plot�.
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The situation is totally different when ���FSR. Under
broad band illumination, spectra taken at any output wave-
guide have periodically spaced peaks;5,6 thus, their Fourier
transform corresponds to a pulsed optical signal coming out
from the AWG and arriving at the external spectrometer.
That is, the information that photons came out of the AWG in
packets can be extracted directly from the measured spectra.
Alternatively, the which-path information can be obtained by
substituting the spectrometer with a free-space autocorrela-
tion apparatus that does not alter the experimental conditions
of the original experiment.5,6

Summarizing this section, the common saying about the
relation between interference and which-path information is
only justified in the context of interference experiments us-
ing monochromatic or narrow band light. This is the ex-
pected situation in experiments with feeble light or single
photons. However, one has to be careful when applying it to
experiments with ultra short pulses of light. In general, inter-
ference features may be either spatial fringes or spectral
peaks. These features depend on the measurement instru-
ments �photodetectors or spectrometers� used to identify the
occurrence of interference. In experiments with ultra short
pulses, where it is possible to find out which path each pho-
ton took by time of flight considerations, spatial interference
features may be smeared out while spectral interference fea-
tures are still detectable. In these experiments, the correct
predictor of the occurrence of interference is not the impos-
sibility to determine the path of the photons. For instance, it
is certain that the first photon arriving at a particular output
waveguide in the experiments described in Refs. 5 and 6 was
one that traversed through the shortest waveguide of the
AWG. In those experiments, the fact that the probability dis-
tribution of clicks is not stationary allows one to obtain the
which-path information without destroying the interference.
The interference of M +1 probability amplitudes
	k�xf ,yf ,�l�, corresponding to photons with the same en-
ergy passing through different slab waveguides, results in the
collection of equally energetic photons only at specific out-
put waveguides �spatial interference�. The interference of
Q+1 probability amplitudes, corresponding to photons with
different energies passing through the same slab waveguide,
results in the collection of photons at specific time intervals
�time or spectral interference27�.

VIII. UNCERTAINTY PRINCIPLE AND WHICH-PATH
INFORMATION

Heisenberg stated the uncertainty principle originally as
follows:16

�x�p � h . �57�

That is, the uncertainties in the position and momentum of a
photon at any instant must have their product greater than the
Plank’s constant. The wide-held belief regarding the relation
between interference and which-path information discussed
in this work is considered to be a more general statement of
the uncertainty principle.16 However, this wide-held belief
can be misleading in interference experiments with ultra
short pulses of light. As discussed above in Sec. VII, the
enunciate of the common saying regarding the relation be-

tween interference and which-path information is correct
only if the phrase “perfect interference pattern” means the
appearance of spatial interference features in the data col-
lected using photodetectors. In the experiments described in
Refs. 5 and 6 where the which-path information was avail-
able, interference occurred before light arrived at the external
spectrometer used to register the output spectra.11 This does
not violate the uncertainty principle as stated by Heisenberg.
To see that this is the case, one can follow Feynman’s rea-
soning to demonstrate that “in order that we shall have a
sharp line in our spectrum corresponding to a definite mo-
mentum, with an uncertainty given by �p, we have to have a
wave train of at least length �x=h /�p.16” Feynman dis-
cussed the case of a grating illuminated with narrow-band
light. In this case, the spectrum has a single narrow peak of
width ��. This means that the light arriving at the grating
was a single featureless long pulse. The peak is produced by
interference because the absence of temporal features in the
long pulse of light arriving at the spectrometer makes it im-
possible to obtain the which-path information through time
of flight measurements. In contrast to what happens in the
narrow band illumination case, a train of pulses arrived to the
external spectrometer in the experiments described in Refs. 5
and 6. A train of pulses was characterized by three temporal
parameters: the pulse width ���0.5 ps, the interval be-
tween pulses �t�20 ps, and the total duration of the train
�tT� �M +1��t. The duration of the input pulse determines
the maximum precision that a time of flight measurement can
have. Thus, the length of the optical path of a photon can be
determined by using a free-space auto-correlation apparatus
with a precision of:

�x � c�� =
c

��
. �58�

That is 150 �m, much smaller than the path length differ-
ence of �L=4 mm corresponding to photons traversing con-
secutive waveguides in the grating of the specially designed
AWG. Consequently, which-path information was available
in those experiments. In correspondence with the Fourier
transform relationship between a temporal signal and its
spectrum, the spectrum measured at any output waveguide in
those experiments contains numerous peaks that are periodi-
cally spaced. The period of the multiple-peaked spectrum is
�1 /�t�50 GHz. The sizes of the smallest features in the
spectrum are determined by the size of the longest feature in
the temporal signal, which is the total duration of the train
��tT�. Thus, the width of the peaks in the spectrum is ��p

�1 /�tT�25 GHz. The size of the largest feature in the
spectrum is determined by the sizes of the shortest features in
the temporal signal; thus, the width of the envelope of the
peaks in the spectrum is equal to the spectral width of the
input pulse. In contrast with what happens in the narrow
band case, the width of the narrow peaks in the spectrum
does not determine the uncertainties in the measurement of
the photon momentum in the broad band illumination case.
Certainly, if there was a single peak of width ��p in the
spectrum, a featureless pulse of length �c�tT��L would
arrive at the spectrometer. This would make it impossible to
find out which waveguide of the grating a photon passed
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through. However, photons with various energy �E=h�� and
momentum �p=h /�� values were collected in any output
waveguide; thus, the uncertainties in the momentum were
larger than the one associated with a single peak. In the
broad band case �p is given by the momentum difference
corresponding to the most separated peaks in the spectrum
measured at any output waveguide, i.e.,:

�p � h� 1

�max
−

1

�min
	 =

h

c
��min − �max� � −

h

c
�� . �59�

Thus, in correspondence with Heisenberg’s uncertainty prin-
ciple, from �58� and �59� follows that ��x���p��h.

IX. CONCLUSIONS

The author presented a comprehensive phenomenologi-
cal quantum description of the ultrafast response of AWGs
illuminated with relatively intense short pulses of light. This
was achieved with no more mathematical or conceptual com-
plexities than that required by a classical description. This
simple but rigorous and detailed, phenomenological quantum
description revealed that, in apparent opposition to wide-held
beliefs, especially designed AWGs can be used to produce
interference in conditions where it is possible to know
through which waveguide of the grating photons passed
through. Implications of this result on the current under-
standing of the uncertainty principle were discussed. The
presented approach was based on the phenomenological in-
terpretation of the photon, that is, a photon is what produces
a click in a photodetector. This was combined with the ap-
plication of Feynman’s rules for describing interference. The
author used the Bohr’s correspondence principle to illustrate
how quantum theory converges in the limit to the classical
description of the interference phenomena.

APPENDIX A
Several useful properties of the FT are used in this work.

For instance, the function sinc�f�� is the one-dimensional FT
of the function rect���,19 i.e.,:

sinc�f�� =
sin��f��

�f�

= FT�rect���� = �
−�

+�

rect���e−i2�f��d� ,

�A1�

where

rect��� =
1 for ��� � 1/2
0 otherwise.

�A2�

The similarity property of the FT:19

If G�f�� = FT�g���� ⇒ FT�g����� = G�f�/��/��� , �A3�

was used to obtain expression �6�, and the shift property of
the FT:19

FT�g�� − �o�� = G�f��e−i2��o, �A4�

was used to obtain expressions �25� and �39�.

APPENDIX B
Using the relation:18

�
k=1

M/2

e+i�2k−1�� =
eiM� − 1

ei� − e−i� . �B1�

The expression �27� can be rewritten in the following way:

��yf� = 1 + ei� eiM� − 1

ei� − e−i� + e−i�e−iM� − 1

e−i� − ei�

=
sin��M + 1���

sin �
. �B2�
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