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Abstract
Wave mechanics triumphed when Schrödinger published his now famous
equation and showed how to describe hydrogen-like atoms using it. However,
while looking for the right equation, Schrödinger first explored, but did not pub-
lish, the equation that we today call the Klein–Gordon equation. An alternative
possible choice is explored in this work. It is shown a quasi-relativistic wave
equation which solutions match the Schrödinger’s results at electron energies
much smaller than the energy associated to the electron’s mass, but include, at
higher energies, the relativity energy’s correction calculated in traditional first
order perturbation theory. A discussion is presented about several consequences
that would follow from using this quasi-relativistic wave equation as a quantum
mechanics foundational equation. It is also suggested the academic use of this
equation for introducing the students to the implications of the special theory
of relativity in introductory quantum mechanics courses.

Keywords: quantum mechanics, relativistic wave equations, history of science,
philosophy of science

1. Introduction

The Schrödinger equation is the most famous equation in quantum mechanics [1–5]. In
1926, Erwin Schrödinger published his now famous equation and showed how to describe
hydrogen-like atoms using it [6]. However, it is now known that while looking for the right
equation, Schrödinger first explored, but did not publish, the equation that we today call
the Klein–Gordon equation, which was first published also in 1926 by Oskar Klein and
Walter Gordon [7, 8]. Schrödinger was well-aware of the Einstein’s special theory of relativity
[9]; thus, he knew that a relativistic quantum mechanics cannot be based on the Schrödinger
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equation because it is Galilean invariant [10, 11]. Schrödinger considered the Klein–Gordon
equation because it is Lorentz invariant, thus valid for any two observers moving respect to
each other at constant velocity [7–9]. Two weakness result from the Galilean invariance of
the Schrödinger equation; first, two such observers will only agree in the adequacy of the
Schrödinger equation, for describing the movement of a quantum particle, when the relative
speeds between the observers is much smaller than the speed of the light in vacuum (c). How-
ever, this is not a big deal because we move much slower than the light. The second limitation
of the Schrödinger equation is that it describes a particle with mass (m), with linear momentum
(p) and kinetic energy (K) related by the classical relation K = p2/(2m), which is not valid at
relativistic speeds [7–9]. Nevertheless, wave mechanics triumphed when Schrödinger, using
the equation chosen by him, was able to reproduce the results previously obtained by Bohr for
the energies of the bound states of the electron in the hydrogen atom [1–5]. This was possible
because the electron in the hydrogen atom has non-relativistic energies [1–5]. Rigorously, the
number of particles may not be constant in a fully relativistic quantum theory [7, 8]. This is
because when the sum of the kinetic and the potential (U) energy of a particle with mass m
doubles the energy associate to the mass of the particle, i.e. Ę = K + U = 2mc2, then a pair
particle-antiparticle could be created from Ę. Consequently, the number of particles is constant
when Ę=K +U < 2mc2. This is what happens in atoms and molecules; thus, this explains why
the results obtained using the Schrödinger equation are a good first approximation in chemistry
applications [5].

In between the Galilean invariant Schrödinger equation and the fully relativistic quan-
tum mechanics, there is a quasi-relativistic energy region where Ę < 2mc2 but Ę is so large
that it is necessary to use an equation that describes a particle having a relativistic relation
between p and K. It is then argued in this work that there is an intermediate option between
the one chosen by Schrödinger (the equation named after him) and the one discarded by him
(the Klein–Gordon equation). This third option, which is valid in the quasi-relativistic energy
region, is the following quasi-relativistic wave equation [11–13]:

i�
∂

∂t
ψ = − �

2

(γV + 1) m
∇2ψ + Uψ. (1)

In equation (1), � is the Plank constant (h) divided by 2π, and γV a relativistic parameter
depending on the square of the particle speed (V2) [9]:

γV =
1√

1 − V2

c2

. (2)

There is a striking similarity between the quasi-relativistic wave equation explored here
(equation (1)) and the Schrödinger equation [1–5]. In fact, γV ∼ 1 when V � c; therefore,
equation (1) coincides with the Schrödinger equation at low particle speeds. While equation (1)
is Galilean invariant for observers traveling at low speeds (Vo � c) respect to each other [11],
equation (1) describes a particle with mass which linear momentum and kinetic energy are
related by the correct relativistic relation [11–13]. Consequently, while wondering about what
would have done Schrödinger if he would have encountered this equation, the author of this
work embarked in the exciting task of recreating the foundational times of wave mechanics.
Facilitated by the similitude between the quasi-relativistic wave equation (equation (1)) and
the Schrödinger equation, several interesting things have been found. First, a positive proba-
bility density can be defined for the solutions of quasi-relativistic wave equation [11]. Second,
it has been possible to solve equation (1) in the context of several problems often included
in introductory courses of quantum mechanics [11–13]; moreover, this has been done with
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no more difficulties than the ones encountered when solving the Schrödinger equation in the
same context [1–5]. Third, a repetition of the Schrödinger success was achieved when using
equation (1) for describing hydrogen-like atoms [13]. It was found that the exact solutions of
this equation include the relativistic correction to the energies found using the Schrödinger
equation [13]. This relativistic correction is traditionally calculated as a first order approxima-
tion using a perturbation theory [4, 14]. This suggests that the quasi-relativistic wave equation
explored here could have been the foundational equation of quantum mechanics. Moreover,
this equation could be used today for finding quasi-relativistic solutions of several practical
problems, and for introducing the students to the intricacies of relativistic quantum mechanics
without a notable complication of the involved mathematical techniques. In what follows, first,
a brief summary of previous results is presented in section 2, then some of their consequences
are discussed in section 3. Finally, the conclusions of this work are given in the last section.

2. The quasi-relativistic wave equation

When the speed (V) of a free particle with mass m is much smaller than the c, then the classical
relation between K and p is given by the following relations [1–5]:

K =
p2

2m
, p = mV. (3)

In quantum mechanics, one can formally substitute K and p in equation (3) by the following
energy and momentum quantum operators [1–4]:

Ê = K̂ = i�
∂

∂t
, p̂ = −i�

∂

∂x
. (4)

Then resulting the 1D Schrödinger equation for a free quantum particle with mass m [1–5]:

i�
∂

∂t
ψSch (x, t) = − �

2

2m
∂2

∂x2
ψSch (x, t) . (5)

However, equation (3) does not give the correct relation between K and p when the particle
moves at faster speeds. Correspondingly, the Schrödinger equation (equation (5)) is not Lorentz
invariant but Galileo invariant [10, 11]; thus, only should be used for slowly moving particles.
At larger particle’s speed, one should use the following well-known relativistic relations [9]:

E2 − m2c4 = p2c2 ⇔
(
E + mc2

) (
E − mc2

)
= p2c2. (6)

And

E = γV mc2, p = γV mV , E = K + mc2. (7)

One can then formally proceed as it is done for obtaining the 1D Schrödinger equation, and
use equation (4) for assigning the temporal partial derivative operator to E in the first expression
of equation (6) [7, 8, 11]. In this way, one can formally obtain the 1D Klein–Gordon equation
[7, 8]:

1
c2

∂2

∂t2
ψKG (x, t) =

∂2

∂x2
ψKG (x, t) − m2c2

�2
ψKG (x, t) . (8)

The Klein–Gordon equation is Lorentz invariant and describes a free quantum particle with
mass m and spin-0 [7, 8]. In contrast to the Schrödinger equation, a second-order temporal
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derivative is present in equation (8). This determines that equation (8) has solutions with pos-
itive and negative energy values while equation (5) has only solutions with positive energies,
which is in correspondence with K having only positive values in equation (3) but E having
positive and negative values in equation (6). The factor (E + mc2) is always different than zero
for E > 0; consequently, equation (6) and the following algebraic equation are equivalents for
E > 0:

(
E − mc2

)
=

p2

(γV + 1) m
. (9)

Each member of equation (9) is just a different expression of the relativistic kinetic energy
of the particle [11]. Assigning the temporal partial derivative operator in equation (4) to E in
equation (9) results in the following differential equation [12]:

i�
∂

∂t
ψKG+ (x, t) = − �

2

(γV + 1) m
∂2

∂x2
ψKG+ (x, t) + mc2ψKG+ (x, t) . (10)

A simple substitution in equations (8) and (10) shows that the following plane wave is a
solution of both equations for E > 0:

ψKG+ (x, t) = e
i
�

(px−Et). (11)

The plane waveψKG+ has an unphysical phase velocity equal to c2/V > c [11, 12]. However,
one can look for a solution of equation (10) of the following form:

ψ (x, t) = ψKG+eiwmt, wm =
mc2

�
. (12)

Such that ψ has a phase velocity smaller than c [11, 12]; thus

ψ (x, t) = e
i
�

(px−Kt). (13)

Substituting ψ given by equation (12) in equation (10) results in the 1D quasi-relativistic
wave equation for a free quantum particle with mass m and spin-0 [11–13]:

i�
∂

∂t
ψ (x, t) = − �

2

(γV + 1) m
∂2

∂x2
ψ (x, t) . (14)

Clearly, equation (14) coincides with equation (5) at low particle’s speeds. Moreover, like
for the Schrödinger equation, a positive probability density can be defined for the solutions of
equation (14), which is Galilean invariant for observers traveling at low speeds respect to each
other [11]. Despite this, equation (14) can be used for obtaining precise solutions of very inter-
esting quantum problems at quasi-relativistic energies [11, 12]. At these energies, a particle
moves so fast that the relation between p and K is relativistic; however, the number of particles
remains constant because the particle does not move too fast. When the particle moves through
a 1D piecewise constant potential U(x), equation (14) should be generalized in the following
way [12, 13]:

i�
∂

∂t
ψ (x, t) = − �

2

[γV(x) + 1]m
∂2

∂x2
ψ (x, t) + U(x)ψ (x, t) . (15)

Often, one looks for solutions of equation (15) corresponding to a constant value of the
energy Ę = K + U = E + U – mc2. However, K, γV and V2 have a discontinuity wherever U(x)
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has one. Consequently, γV is a function of x in equation (15) because, in general, the square of
the particle’s speed (V2) depends on the position [12]. Nevertheless, for 1D piecewise constant
potentials, one can look for a solution of equation (15) with the following form in each of the
regions where K, γV , and V2 are constants [1–4, 12, 13]:

ψ (x, t) = XK(x)e−
i
�

Et, Ę = K + U. (16)

In equation (16), XK is a solution of the following equation [1–4, 12, 13]:

d2

dx2
XK (x) + κ2XK (x) = 0, κ =

p
�
. (17)

And [12, 13]:

κ =
p
�
=

1
�

√
(γV + 1) mK =

1
�

√
(γV + 1) m (E − U). (18)

The allowed values of κ are determined from equation (17) and the boundary conditions.
Therefore [12]:

K =
�

2κ2

(γV + 1) m
. (19)

As expected, when γV ∼ 1, equation (19) gives the non-relativistic values of the particle’s
energies at low speeds, K ∼ �

2κ2/(2m) [1–4]. Moreover, from equation (19) and the relativistic
equation, K = (γV − 1) mc2, follows that [12, 13]

γV
2 = 1 +

(
λC

λ

)2

, λC =
h

mc
, λ =

2π
κ
. (20)

In equation (20), λC is the Compton wavelength associate to the mass of the particle [7, 9],
and λ is the de Broglie wavelength associated to p [1–4]. An analytical expression of the
precise quasi-relativistic kinetic energy of the particle can then be obtained by substituting
equation (20) in equation (19) [13]:

K =
�

2κ2[
1 +

√
1 +

(
λC
λ

)2
]

m

. (21)

As expected, equation (21) match the non-relativistic expression of the particle’s kinetic
energy when p = h/λ is very small because λ� λC. However, in each region where the value
of U is constant, the values of K and then Ę = K + U calculated using equation (21) are
smaller than the ones calculated using the Schrödinger equation. Several 1D problems have
been solved using equation (15) including the 1D infinite rectangular well [11], the quantum
rotor [11], reflection in a potential step [12], tunneling through a barrier [12], and bound states
in a rectangular well [12]. The tridimensional equation (1) has been solved for a central poten-
tial including the infinite spherical well and the Coulomb potential in hydrogen-like atoms
[13]. The last case is particularly important because permits a detailed comparison between
the theoretical results and the experimental data [13]. In all these cases, the solutions of the
quasi-relativistic wave equation were found following the same procedures than the ones used
for solving the Schrödinger equation in those cases. This could permit the easy introduction
in introductory quantum mechanics courses of non-perturbative relativistic corrections to the
Schrödinger equation.
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3. Some consequences of the quasi-relativistic wave equation

When solving both the quasi-relativistic wave equation and the Schrödinger equation, for the
1D rectangular and the spherical infinite wells, the obtained values of κ are given by the
following equation [4, 11, 13]:

κn =
nπ
L , n = 1, 2, . . . (22)

In equation (22), L is the length of the 1D well or the diameter of the spherical one.
Consequently:

Kn =
n2[

1 +

√
1 +

(
nλC
L

)2
]( λC

βL

)2

mc2· (23)

For the spherical well, the parameter β = 1 but β = 1/2 for the 1D well. As expected, the
term between brackets in equation (23) is ∼2 when n = 1 and L � λC; thus, K1 � mc2 and
K1 given by equation (23) coincides with the energies of the infinite wells calculated using the
Schrödinger equation [4]. In contrast, when the dimension of the well is close to λC, the min-
imum particle energy is quasi-relativistic; therefore, equation (23) must be used. This implies
a fundamental connection between quantum mechanics and especial theory of relativity. From
equation (23) follows that K > 2mc2 if a single particle with mass was confined in a volume
much smaller than λC

3. But when this happen the number of particles may not be constant
anymore; therefore, a single point-particle with mass cannot exist. Only in fully relativistic
quantum field theories, where the number of particles is not constant, point-particles with mass
can exist [11–13]. This is a fundamental and general statement in relativistic quantum mechan-
ics [7, 8]. Introducing the quasi-relativistic equation then provides a simple but precise way to
present this concept in introductory quantum mechanics courses. Moreover, due to the fact that
this statement just refers to the confinement of a particle with mass, one could adventure the
following far reaching consequences: it is impossible to confine a single particle with mass in
a point, this should be true for an electron, a quark, and probably may also be true for a black
hole and the whole Universe at the beginning of the Big Bang.

Solving equation (1) for the Coulomb potential in hydrogen-like atoms allows for checking
the validity of the quasi-relativistic wave equation. Moreover, this also permits to find out
what is included and what is not in the quasi-relativistic approximation. Due to its importance,
a summary of the solution of the quasi-relativistic wave equation for hydrogen-like atoms is
given in the appendix . The values of Ę for the bound states calculated by solving equation (1)
are approximately given by the following equation [13]:

Ęn,l ∼ Ęn,SchZ2

(
1 +

2α2

n(2l + 1)

)
. (24)

In equation (24), Z is the atomic number, l is an integer in the interval from 0 to (n − 1), α
is the fine-structure constant [7, 8]:

α =
1

4πεo

e2

�c
∼ 1/137. (25)
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Table 1. Values of Ęnl − Ęn,Sch (second column) and Ęnl,Th − Ęn,Sch (third column) in
meV.

(n, l) Eq. (1) − Eq. (26) Eq. (27) − Eq. (26)

(1, 0) −0.905 260 −0.905 159
(2, 0) −0.147 102 −0.147 088
(2, 1) −0.026 401 −0.026 400
(3, 0) −0.046 938 −0.046 934
(3, 1) −0.011 175 −0.011 174
(3, 2) −0.004 023 −0.004 023

And Ęn,Sch corresponds to the bounded energies values of the electron in the hydrogen atom
calculated using the Schrödinger equation [2–4]:

Ęn,Sch = −
[

μ

2�2

(
e2

4πεo

)2
]

1
n2

, n = 1, 2, 3, . . . . (26)

In equation (26), μ=(memn)/(me + mn) is the reduced mass of the electron in a hydrogen-
like atom with a nucleus of mass mn; me and e are the electron mass and charge, respectively;
and εo is the electric permittivity of vacuum.

The exact values of Ęn,l, which are calculated by exactly solving equation (1) as described in
the appendix, can be validated by comparing them to the electron energies calculated by adding,
as a first perturbative correction, the relativistic correction to equation (26), i.e. comparing to
the values obtained using the following expression [4, 14]:

Ęn,l,Th ∼ Ęn,SchZ2

{
1 − α2

n2

[
3
4
− n

l + 1
2

]}
. (27)

Table 1 shows energy differences values in meV corresponding to the hydrogen’s (Z = 1)
electron states with n = 1, 2 and 3. The values in the second column corresponds to the dif-
ference between the exact values of Ęnl calculated by solving the equation (A16) as described
in the appendix, and the values of Ęn,Sch given by equation (26). The energy difference val-
ues in the third column corresponds to the difference between the values of Ęnl,Th given by
equation (27) and the values of Ęn,Sch. By comparing the values reported in both columns,
as should be expected because the relativistic correction includes the difference between the
correct relativistic and the non-relativistic expression of K [4, 14], one can conclude that the
electron energies calculated using the quasi-relativistic wave equation (equation (1)) includes
the relativistic correction to the energy calculated in traditional first order perturbation the-
ory [4, 14]. This also permits to realize the limitations of equation (1). It is well-known that
the Dirac equation is the correct relativistic equation for describing the bounded states of the
electron in a hydrogen-like atom [7, 8]. Besides the relativistic correction to K, two other cor-
rections to equation (26) should be included for describing the fine structure of the hydrogen
spectrum [14]. Neither the Darwin nor the spin–orbit corrections are included in the quasi-
relativistic wave equation [13, 14]. Nevertheless, it is good to emphasize that equation (1)
exactly includes the correct relativistic relation between p and K. The quasi-relativistic wave
equation for hydrogen-like atoms can be exactly solved [13], while the relativistic correction
included in equation (27) is just an approximate result.

The superposition principle is one of the pillars of quantum mechanics [1–4]. The
Schrödinger, the Klein–Gordon, and the Dirac equations are all linear equations. However,

7
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neither the quasi-relativistic wave equation nor equation (10) are linear [11]. For instance, let
be ψ1and ψ2 two solutions of equation (1) for the infinite well problem, and corresponding to
different values of V2; then, ψ1and ψ2 would not be solutions of the same equation (1) but of
slightly different equation (1) with different values of γV . Moreover, the wave function ψ =
aψ1 + bψ2 would not be a solution of any equation (1). Consequently, if the quasi-relativistic
wave equation could be a foundational equation, then the validity of the superposition principle
in quantum mechanics should be questioned or revised [11]. May be this is why Schrödinger
settled for the equation named after him instead of using a non-linear quasi-relativistic wave
equation, which can be solved with no more difficulties than the ones present when solving the
Schrödinger equation, but gives more precise results than the equation that he chose. Never-
theless, the existence of such non-linear equation rises the intriguing possibility of a quantum
mechanics based on a non-linear wave equation. This is currently important because it is often
assumed that the superposition state ψ represent a qubit, concept that is at the heart of current
attempts for demonstrating a practical quantum computer [15, 16]. Would the eventual demon-
stration of a quantum computer exclude the possible existence of a quantum mechanics without
a superposition principle? Could exist an alternative explanation of the eventual demonstra-
tion of a quantum computer that was based in a foundational non-linear wave equation? These
are fascinating questions of current interest that are motivated by a third option that may be
Schrödinger did not consider.

Alternatively, and this is the author’s opinion and also the current prevalent opinion in the
physicists’ community, the non-linearity of the quasi-relativistic wave equation indicates that
equation (1) is not a foundational wave equation but a kind of eigenvalue equation like, for
instance, equations (17) and (A9) (shown in the appendix ). This can be made evident by using
equation (7) for eliminating γV from equation (1), thus rewriting equation (1) as the following
eigenvalue equation where ψ and Ę should be found simultaneously:

i�
∂

∂t
ψ = − c2

�
2

[Ę − U] + 2μc2
∇2ψ + Uψ. (28)

While both forms of the same equation are equivalent, equation (1) is more suggestive due
its striking similarity to the Schrödinger equation. The foundational equation corresponding to
equations (1) and (28) is then the Klein–Gordon equation, which is linear and Lorentz invari-
ant. For instance, let be ψ1and ψ2 two solutions of the non-linear 1D quasi-relativistic wave
equation (equation (14)), for a particle in an infinite well, and corresponding to different values
of Ę = K; therefore, the wavefunctionψ = aψ1 + bψ2 is not a solution of equation (14). How-
ever, due to equation (12), a solution of equations (8) and (10) can be found from a solution of
equation (14) in the following way:

ψKG+ (x, t) = ψ (x, t) e−iwmt, wm =
mc2

�
. (29)

Therefore, ifψKG+,1 andψKG+,2 are respectively related toψ1 andψ2 through equation (29);
then, the wavefunction ψKG+,1,2 = aψKG+,1 + bψKG+,2 is not a solution of the non-linear
equation (10) but, due to the linearity of equation (8), ψKG+,1,2 is a solution of the 1D
Klein–Gordon equation. From this point of view, equation (1) provides a useful way to find
exact solution of the Klein–Gordon equation with positives energies when Ę = K + U < 2mc2.
The Schrödinger equation then appears as a limit case of the quasi-relativistic wave equation
when Ę� 2mc2. Luckily, the Schrödinger equation recovers the linearity required by the super-
position principle. This allowed Schrödinger to construct a non-relativistic quantum mechanics
based on the equation named after his genius.

8
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4. Conclusions

Several properties of the solutions of the quasi-relativistic wave equation were summarized and
discussed. It was shown that this quasi-relativistic equation can be solved following the same
procedures and mathematical techniques needed for solving the Schrödinger equation; how-
ever, the results obtained are valid for particle energies where the correct relativistic relation
between p and K must be used. This suggests the academic use of the quasi-relativistic wave
equation for introducing the students to the implications of the special theory of relativity in
introductory quantum mechanics courses. In addition, several consequences that would follow
from using this quasi-relativistic wave equation as a quantum mechanics foundational equation
were discussed. It was argued that no single particle with mass can be confined in a point, and
it was suggested that this statement may be extrapolated to black holes and the whole Universe
at the beginning of the Big Bang. It was also suggested that the current febrile competition
for demonstrating a practical quantum computer obligates us to think about the possibility or
not of the existence of a quantum mechanics theory based on a non-linear foundational wave
equation. Finally, the existing relationship between the quasi-relativistic wave equation and the
Klein–Gordon equation was clarified.

Appendix

The quasi-relativistic wave equation for hydrogen-like atoms is given by the following
expression [13]:

i�
∂

∂t
ψ
(
⇀
r , t

)
= − �

2

[γV (r) + 1]μ
∇2ψ

(
⇀
r , t

)
+ UC (r)ψ

(
⇀
r , t

)
. (A1)

The Coulomb potential is given by

UC (r) = − e2

4πεo

Z
r
. (A2)

Equation (A1) can be solved looking for a solution of the form [1, 13]:

ψ (r, θ,ϕ, t) = R(r)Ω(θ,ϕ)e
i
�

Et. (A3)

Substitution of equation (A3) in equation (1) then results in [1, 13]:

1
r

d2

dr2
(rR) +

[γV (r) + 1]μr2

�2
[E − U (r)] R = −l (l + 1)

R
r2
. (A4)

And:

Ωl,m (θ,ϕ) = Y (m)
l (θ,ϕ) , l = 0, 1, 2 . . . ; m = −l,−l + 1, . . . 0, 1, . . . , l. (A5)

In equation (A5), Yl
(m) are the spherical harmonic functions [1–5]. equation (A4) can be

solved making R(r) = χ(r)/r, then resulting the following equation [4, 13]:

d2

dr2
χ (r) +

[γV (r) + 1]μ
�2 [Ę − WC (r)]χ (r) = 0. (A6)

With:

WC (r) =

[
UC (r) +

�
2

[γV (r) + 1]μ
l (l + 1)

r2

]
. (A7)

9
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As expected, when V � c then γV ∼ 1; therefore, equation (A7) reduces to the radial
equation of a hydrogen-like atom obtained using the Schrödinger equation [4]. Using
equation (7), it is possible to eliminate γV from equations (A6) and (A7) by making

[γV (r) + 1]μ
�2

=
K + 2μc2

c2�2
=

[Ę − UC (r)] + 2μc2

c2�2
. (A8)

Using equation (A8) then allows for rewriting equation (A6) in the following way [13]:

{
− �

2

2μ
d2

dr2
χ (r) − [Ę − UC (r)]χ (r) +

�
2

2μ
l (l + 1)

r2
χ (r)

}
− 1

2μc2
[Ę − UC (r)]2χ (r) = 0.

(A9)
The term between braces in equation (A9) coincides with the radial equation that should

be solved when using the Schrödinger equation [4]. The last term of equation (A9) can be
disregarded when K � μc2; therefore, the last term is a quasi-relativistic correction to the non-
relativistic radial equation. Proceeding like it is done when solving the non-relativistic radial
equation, one can introduce [4, 13]

ζ =
1
�

√
−2μĘ. (A10)

For bound states, Ę < 0; therefore, ζ is real. Using equation (A10) allows for rewriting
equation (A9) in the following way [4, 13]:

d2

dρ2
χ (ρ) =

[
ρ1 −

ρo

ρ
+

l (l + 1) − α2Z2

ρ2

]
χ(ρ). (A11)

With:

ρ ≡ ζr, ρo ≡
(

μe2

2πεo�
2ζ

− α
�ζ

μc

)
Z, ρ1 ≡

[
1 −

(
�ζ

2μc

)2
]
. (A12)

Formally, when �ζ � μc and if α was null, then equations (A11) and (A10) would reduce
to the corresponding equations obtained when solving the Schrödinger equation [4]; therefore,
there is a relativistic correction in each term inside the brackets in equation (A11). Looking for
a solution of equation (A11) of the following form [13]:

χ (ρ) ≡ τ (ρ) ρ
1
2

[
1+
√

(1+2l)2−4α2Z2
]
e−

√
ρ1ρ. (A13)

Results [13]:

ρ
d2

dρ2
τ (ρ) +

[
1 −

(
2
√
ρ1

)
ρ+

√
(1 + 2l)2 − 4α2Z2

]
d

dρ
τ (ρ)

+

[
ρo −

√
ρ1

(
1 +

√
(1 + 2l)2 − 4α2Z2

)]
τ (ρ) = 0. (A14)

Again, as expected, if the quasi-relativistic corrections are very small, then equation (A14)
reduces to the one obtained when using the Schrödinger equation [4, 13]. Finally, assuming
that τ (ρ) can expressed as a finite power series in ρ [4, 13]:

τ (ρ) =
jmax∑
j=0

a jρ
j. (A15)

10
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And substituting equation (A15) in equation (A14) results [13]:

ρo = [2n +Δ(l, Z)]
√
ρ1. (A16)

With:

Δ(l, Z) =

[(
1 +

√
(1 + 2l)2 − 4α2Z2

)
− 2(l + 1)

]
. (A17)

Formally, when �ζ � μc and if α was null, then equation (A16) would reduce to ρo = 2n,
with n = j + l + 1, which is the resulting equation when solving the Schrödinger equation
[4]. It is worth noting that the author was able to find an exact analytical expression for Ę
by substituting ρo and ρ1 given by equation (A12) in equation (A16), solving the resulting
equation for ζ, and then using equation (A10) [17]. The exact quasi-relativistic value Ę now
depends not only on the principal quantum number n, but also on the angular quantum number
l and Z. However, a simpler result easier to use can be found, for instance, assuming that the
quasi-relativistic corrections included in ρo and ρ1 do not need to be accounting for because
they are too small. Consequently, the effect of the quasi-relativistic correction included in the
centrifugal term in equation (A11) is quantified by the following equation [13]:

Ęn,l = −
[

μ

2�2

(
e2

2πεo

)2
]

Z2

[2n +Δ(l, Z)]2 . (A18)

As expected, if α was null and Z = 1, equation (A18) would be identical to Ęn,Sch given by
equation (26). Equation (A18) can be rewritten as

Ęn,l = −μc2α2Z2 1

[2n +Δ(l, Z)]2 . (A19)

Then equation (24) can be obtained from equation (A19) using the following approximated
relations:

1

[2n +Δ(l, Z)]2 ∼ 1

(2n)2

[
1 − Δ(l, Z)

n

]
. (A20)

And:

Δ (l, Z) ∼ − 2α2

2l + 1
. (A21)
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