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Abstract
A recently proposed approach to relativistic quantum mechanics (Grave de Peralta, 
Poveda, Poirier in Eur J Phys 42:055404, 2021) is applied to the problem of a par-
ticle in a quadratic potential. The methods, both exact and approximate, allow one 
to obtain eigenstate energy levels and wavefunctions, using conventional numerical 
eigensolvers applied to Schrödinger-like equations. Results are obtained over a nine-
order-of-magnitude variation of system parameters, ranging from the non-relativis-
tic to the ultrarelativistic limits. Various trends are analyzed and discussed—some of 
which might have been easily predicted, others which may be a bit more surprising.

Keywords Harmonic oscillator · Klein–Gordon equation · Spinless Salpeter 
equation · Schrödinger equation · WKB approximation

1 Introduction

The harmonic oscillator (HO) is a fundamental problem in quantum mechanics, which 
serves as an elementary description of physical phenomena as varied as the vibrational 
modes of molecules and solids, or the modes of the electromagnetic field. The most 
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prominent feature of the quantum HO is its equally spaced energy levels, bringing a 
direct linkage to the concept of quantum field excitation.

Being an exactly solvable model, the quantum HO is discussed in every introduc-
tory quantum mechanics textbook [1–4]. For definiteness, we take the solutions of the 
non-relativistic quantum HO problem to be the eigenstate solutions of the following 
ordinary differential equation—i.e., the stationary Schrödinger equation:

Here, m is the mass of the particle, k is the curvature of the potential and

is the momentum operator, as per usual notation.
From Eq. (1) the energy of the nth level will be

with � =
√
k∕m . Eq.  (3) describes a linear relation between the energy and the 

quantum number n—a unique property of a non-relativistic particle trapped in a 
quadratic well, hearkening back to the linear relation between energy and action in 
the classical HO. In principle, n—and therefore En—extends upwards ad infinitum.

On the other hand, the equipartition theorem ensures that infinite energy implies infi-
nite kinetic energy (since kinetic and potential energy expectation value contributions 
are equal)—which in turn implies a finite n beyond which relativistic effects cannot be 
neglected. What happens then? Whatever the answer, this simple argument makes it 
clear that the large n limit should be regarded as one path towards the relativistic limit.

The relativistic quantum HO problem has been addressed previously [5–7] using the 
time-independent Klein–Gordon equation for a particle in a gauge potential [8, 9]:

Note that here and throughout this work, we assume units where c = 1 , which allows 
us to remove the symbol “c” from the formulation. In effect, this leaves m as the 
relativistic parameter. More specifically, since HO energies increase with decreasing 
m, the m → 0 limit provides another path to the relativistic limit.

Returning to the Klein–Gordon equation, the important observation here is that 
Eq. (4) is equivalent to the non-relativistic Schrödinger equation (e.g., Eq. 1) for a parti-
cle with effective energy (E2∕2m − m∕2) , moving in an effective potential,

Note that in the non-relativistic or large-m limit, m ≈ E , and so Eq. (5) approaches 
the familiar quadratic form of Eq. (1).
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More generally, Eq. (5) describes a potential energy that is unbounded from below 
as x → ±∞ . As a consequence, the positive-energy solutions of the Klein–Gordon 
oscillator correspond to resonances [5–7]. Moreover, even when the anharmonic x4 
term in Eq. (5) is a small perturbation [5], such that tunneling through the barrier 
can be neglected, the aforementioned isospectral (linear) feature of the HO spectrum 
is destroyed, leading to a decrease in spacing between levels with increasing energy 
or n [5]. Of course, the general Klein–Gordon solutions are well known to exhibit 
some other undesirable features such as negative energy solutions, that will not be 
dwelt on further here.

Instead, we point out some less well publicized features of the Klein–Gordon HO 
solutions that will be of interest for the present work. To begin with, the solutions as 
described above are in close analogy with the behavior of a classical relativistic par-
ticle in a quadratic potential. In the classical case, the particle may also be thought 
to move in an effective potential analogous to Eq.  (5)—but with the height of the 
barrier increasing with the particle energy, such that the motion remains always 
bounded and periodic [10]. Furthermore, the period of the oscillation increases with 
energy, due to time dilation along the world line—indicating that the behavior of 
a particle in a quadratic potential loses its “harmonic” character in the relativistic 
regime [10].

Finally, we point out another interesting feature, also implied by the above discus-
sion—this being that the effective potential itself depends on the energy value, E. 
The classical ramifications of this have already been discussed; quantum mechani-
cally, this implies that the non-relativistic-like form of Eqs.  (4) and (5) actually 
describes a nonlinear Schrödinger equation—for which standard self-consistent or 
mean field solution methods are well established, e.g. in electronic structure  [11, 
12].

In this work, instead of working directly with the Klein–Gordon oscillator equa-
tion, we use the “square root” form, as follows [8, 9]:

Note that the relativistic rest energy has now been subtracted from both sides, in 
order to result in an energy E that can be directly compared with the usual non-rela-
tivistic result of Eq. (3). Equation (6) above (but generalized for arbitrary four-vector 
potentials) is also often encountered in textbooks, as a covariant relativistic eigen-
value equation. However, it is often dismissed as “impractical”, due to the square-
root operator. That said, Eq. (6) is evidently closely related to the so called “spinless 
Salpeter equation”, a relativistic model widely used to describe hadrons as bound 
states of constituent quarks [13]. In order to avoid the problematic square-root oper-
ator, the solutions of this equation have been obtained using non-relativistic-like 
effective hamiltonians [13, 14] or the auxiliary fields formalism [15], with which the 
present method bears some resemblance.

Recently, we have developed some practical tools for solving Eq. (6) directly—both 
(numerically) exactly, and approximately [16], for arbitrary scalar potentials. In particu-
lar, the previously developed approximate methods rely on a nonlinear Schrödinger or 

(6)
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iterative mean-field-type approach, not unlike that described above in the Klein–Gor-
don context. Such methods require that a conventional Schrödinger equation be solved 
multiple times. In the present approach, we develop new methods that—at least in the 
HO context—allow us to the “cut to the chase,” by bypassing such multiple rounds of 
explicit Schrödinger solution.

In the context of exact numerical solutions for the relativistic quantum HO, analyti-
cal Hamiltonian matrix elements can be obtained, if one uses a particle-in-a-box basis-
set representation. Moreover, with this choice, the sign ambiguity of the square root 
operator completely disappears, as the kinetic energy matrix becomes diagonal and 
positive-definite. Numerically exact, quadrature-free, positive-energy—and above all, 
bound—solutions are thus readily obtainable.

In this work, we shall use precisely this approach to compute the energy levels 
and wavefunctions for the low-lying relativistic quantum HO eigensstates—with high 
numerical accuracy, in a manner that admits rigorous characterization of basis set trun-
cation error (the only source of error). Note that this approach is rigorously variational. 
The specific problems considered range from the non-relativistic to the ultrarelativistic, 
by varying the mass parameter over the very broad interval, 10−6 ≤ m ≤ 103 (in units 
where ℏ = k = 1).

The exact numerical solutions as obtained above then serve as a benchmark to vali-
date the analytical approximations [16]. As might be expected, it will be shown that 
exact and approximate relativistic quantum solutions approach Eq. (3), and each other, 
in the non-relativistic limit where E ≪ m . Conversely, in the ultrarelativistic or m → 0 
limit, a radically different, highly nonlinear energy spectrum is observed, for which two 
simple, but approximate, analytic expressions are derived.

The remainder of this paper is organized as follows. In Sect. 2, the numerical meth-
ods used to solve Eq. (6), both approximate and exact, are presented in detail. These are 
then applied to the HO system, respectively, in Sects. 3 and 5—with the latter section 
also including comparisons across m and n values. Finally, some concluding remarks 
are presented in Sect. 6.

2  The Methods

For the conceptual details of this approach in its general time-dependent formulation, 
the reader is referred to [16]. Here, we restrict consideration of the derivations to the 
time-independent or stationary solutions only.

The approach starts by rewriting Eq. (6) in the form

which shall be called the stationary “Poirier-Grave de Peralta” (PGP) equation, fol-
lowing Ref. [16]. In Eq. (7) above, �̂� is the dimensionless square-root operator,

(7)
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and V̂  corresponds to the “scalar” time-like component of the full electromagnetic 
four-potential—taken here to be the quadratic HO potential. With this interpretation, 
Eq. (7) becomes fully Lorentz covariant [8], although it does involve a square-root 
operator.

One strategy for avoiding the square root was suggested by Poirier (see the Appen-
dix of Ref. [16]), who noted that the kinetic energy operator of Eq. (7) can be rewritten 
as a continued fraction, leading to the following appealing equation:

Eq. (9) above is referred to as the “Poirier equation.” It is exact, and furthermore, 
avoids the square root sign ambiguity, regardless of the choice of representational 
basis set (i.e., particle-in-a-box or otherwise). It also suggests a converging sequence 
of numerical approximations, obtained by truncating the continued fraction at suc-
cessive orders  [16, 17]—which, as will be demonstrated in a future paper, can be 
made to converge extremely rapidly.

Alternatively, the formal similarity between the operator p̂2∕(1 + �̂�)m and the non-
relativistic kinetic energy operator p̂2∕2m , led Grave de Peralta to propose the follow-
ing equation:

Here, the troublesome square-root operator  (8) is simply substituted by the corre-
sponding Lorentz parameter:

Equation (10) is the so-called “general Grave de Peralta” (gGP) equation. Its similar-
ity with the Schrödinger equation allows standard methods, as used for well-known 
non-relativistic quantum mechanical problems, to be applied directly in the relativ-
istic domain as well  [18–22]. This requires, however, that some specific value be 
chosen for the parameter � . Different � values yield different solutions—hence the 
use of the term “general.” Note that regardless of how � is chosen, the resultant gGP 
equation is in general an approximation only; thus, its solution, �gGP is not equal to 
the corresponding exact solution, � , of Eq. (7).
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2.1  Poveda Parametrization and the Grave de Peralta–Poveda–Poirier Equation

Although many different schemes could in principle be adopted for choosing a suit-
able � value for the gGP approximation, one of the most natural must surely be the 
expectation value of the �̂� operator itself:

This is what we call the “Poveda parametrization” [16]. In practice, Eq. (12) cannot 
be used to determine � , since the exact � is not known.

To make progress, we replace the exact � in Eq. (12) with the specific solution of 
the gGP equation that corresponds to the resultant value of � itself. This choice of � 
gives rise to the “Grave de Peralta-Poveda-Poirier” (GPPP) approximation, �GPPP , 
satisfying the following GPPP equation or self-consistency condition:

The GPPP equation is a non-linear Schrödinger equation—expressed by the fact that 
the Hamiltonian operator itself depends on the solution wavefunction. Such equa-
tions may be solved using an iterative self-consistent procedure of the type used rou-
tinely, e.g., in Hartree–Fock calculations [11, 12]. This method was already recently 
presented [16] and will not be described further here.

On the other hand, for the present HO application, there is a much faster, more 
direct way to obtain exact solutions to Eq. (13), which does not involve converging 
an iterative sequence. This stems from the realization that regardless of the choice 
of � , all gGP solution wavefunctions, �gGP , are simply variations of the familiar 
non-relativistic Hermite-polynomial-based solutions, but with rescaled masses, 
m → � = (1 + �)m∕2 . Thus,

where �n(x;�) are the usual non-relativistic solutions from Eq.  (1), but with m 
replaced with �.

Whereas for gGP, �—and therefore �—can take on any value, to obtain the exact 
GPPP � value, we need merely solve the following equation:

The expectation value in Eq.  (15) above is particularly easy to evaluate in the 
momentum representation—as the matrix representation of �̂� becomes diagonal and 
analytical, and the corresponding HO 𝜓n(p;𝜇) forms are of course also well known 
analytically. Note that the resultant �GPPP and �GPPP values are state-specific, mean-
ing that they vary with the quantum state index n.

In Sect.  5 we will present exact ground state HO solutions of the GPPP equa-
tion (Eq. 13)—as obtained using the approach described above. For the most part 
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however, we shall concentrate more on a new analytical approximation to GPPP, to 
be described in Sect. 2.2—with results presented in Sect. 3.

2.2  Self‑consistent (SC)‑GPPP Approximation

Consider the following rearrangement of Eq. (6):

Equation (16) above certainly holds for the exact relativistic solution, � . However, 
if �GPPP is a good approximation, then the relation should also hold approximately 
for �GPPP as well. By replacing � with �GPPP in Eq. (16), multiplying both sides on 
the left by ⟨�GPPP ∣ , and finally, making use of Eq. (12), we obtain the approximate 
relation:

Next, we substitute the Eq. (17) formula for �GPPP into Eq. (13), and again multiply 
on the left by ⟨�GPPP ∣ to obtain

Now then, a key advantage of Eq.  (18) is that it provides relativistic energy lev-
els directly in terms of expectation values—not of the square root operator, as in 
Eq. (15), but of the much simpler non-relativistic Hamiltonian components, V̂  and 
p̂2 . Of course, for all �gGP solutions of the HO, analytic expressions for these expec-
tation values are well known. We are therefore motivated to define a new approxi-
mation, wherein �GPPP in Eq.  (18) is replaced with a different �gGP solution (i.e, 
different � value) such that both Eqs.  (17) and  (18) are now satisfied exactly. The 
above defines what we call the “self-consistent” (SC)-GPPP approximation. It is so-
called because the SC-GPPP gGP � values may be solved for in self-consistent fash-
ion [16]—similar to, but more straightforwardly than, the method outlined at the end 
of Sect. 2.1.

This can be achieved as follows. First, Eq.  (18) is replaced with the following 
exact SC-GPPP expression, for which all expectation values are presumed to be 
taken with respect to �SC−GPPP:

This leads at once, via recursive expansion, to a continued fraction form:
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Of course, Eq. (20) is highly reminiscent of Eq. (9), except that all operator compo-
nents are replaced with expectation values. Alternatively, we can “close” the contin-
ued fraction series, in order to generate an expection-value-based approximation to 
the original exact square root operator form of Eq. (6):

Thus, in the SC-GPPP approach, the relativistic energy levels manifest the correct 
classical relativistic relation (through expectation values) with the particle’s poten-
tial energy and linear momentum squared.

In the specific case of the HO system, moreover, these quantities may all be 
obtained analytically, once the correct SC-GPPP value of � has been established. We 
examine this issue further in Sect. 3.

3  Analytical SC‑GPPP Results for the HO System

From Eqs. (10) and (14), all solutions, �n(x;�n) , of the HO gGP Hamiltonian must 
have energies given by

where an n subscript has been added to � , to reflect its state-specific nature 
(Sect. 2.1). Now, from the GPPP formulation, the value of �n (and therefore �n ) is 
obtained from the expectation value of �̂� , as in Eq. (15).

Substituting Eq. (15) into (22) then leads to

Next, we apply the SC-GPPP condition—i.e., the exact equality version of 
Eq. (17)—to replace Eq. (23) above with
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Now, considering that all �n(x;�n) are generic HO solutions, it is clear that the 
expectation value of the potential energy is one half of the total energy, so that

Substituting into Eq. (24) then yields

At this point, it is straightforward to convert Eq. (26) into the following cubic equa-
tion, with the understanding that the desired solution corresponds to a real positive root:

Equation (26) can be easily solved—even analytically! Numerically, one could start 
with the large-m or non-relativistic limit result, i.e. En ≈ En , and solve for En itera-
tively. Amusingly, this gives rise to the following continued-fraction-like expansion, 
known as a “nested radical”:

The form of Eq.  (28) makes it clear that En < En always, with the discrepancy 
increasing with increasing n and or decreasing m. As noted elsewhere  [13], the 
non-relativistic kinetic energy p2∕2m represents an upper bound of the rela-
tivistic one 

√
m2 + p2 − m , which can be easily verify by squaring the inequal-

ity 
√
m2 + p2 − m ≥ 0 . In this sense a Schrödinger eigenvalue, for a given poten-

tial, would be an upper bound of the corresponding eigenvalue of Eq  (6), with 
the same potential. Moreover, the approximated SC-GPPP energy of Eq.  (21) 
tend to overestimate the exact value, considering the fundamental inequality: 
⟨
√
m2 + p̂2⟩ ≤

√
m2 + ⟨p̂2⟩ [13].

In the ultrarelativistic limit, (En∕En) → 0 , but the precise manner in which this 
occurs is quite illuminating to consider. From Eq. (27), we see that in the m → 0 limit,

Equation  (29) above leads to two notable conclusions about the ultrarelativistic 
limit. First, instead of a linear relationship, the energy levels En exhibit a sublinear 
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n2∕3 power law scaling in n. This implies that the energy level spacing decreases 
with n with an inverse cube root dependence ( n−1∕3 ). Second, whereas the En scale 
with mass as m−1∕2 , the ultrarelativistic limit En become entirely mass-independent. 
Though the above predictions may perhaps seem surprising, they also emerge from 
a relativistic phase space analysis of the classical action, as will be shown in Sect. 4, 
wherein an exact analytical formula is also derived. It is worth noting that the above 
n2∕3 behavior of the ultrarelativistic energy of a particle in a quadratic potential, was 
previously obtained using the previously mentioned effective hamiltonian  [13, 14] 
and auxiliary fields methods [15].

Figure  1 shows the three lowest SC-GPPP energy levels for the ℏ = k = 1 HO 
system, as a function of m, with m ranging from 10−4 to 103 . These curves were com-
puted as solutions to Eq. (27). The corresponding non-relativistic En curves are also 
indicated. Note that the latter diverge as m−1∕2 in the m → 0 limit, as discussed. The 
En curves, on the other hand, approach finite upper bounds—i.e., mass-independ-
ent constants, as predicted by Eq. (29). Moreover, the level spacing decreases with 
increasing n, also exactly as predicted.

4  Approximate WKB Results, and Exact Analytical Results for m → 0

In the standard Wentzel–Kramers–Brillouin (WKB) semiclassical the-
ory [23–25], approximate energy levels are obtained through the classical action-
energy relationship, S(E), where S is the phase space volume contained within 

 0
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Fig. 1  Comparison of three lowest-lying energy levels of the ℏ = k = 1 relativistic HO system, as a func-
tion of mass, as computed using: SC-GPPP method of Eq.  (27) (red solid lines); non-relativistic limit 
(dotted black lines) (Color figure online)
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the classical Hamiltonian contour of energy E. With S(E) known, the discrete 
eigenenergies, En , are then obtained from the usual half-integer quantized action 
values, Sn = 2�ℏ(n + 1∕2) . This relation is presumed to hold even when the Ham-
iltonian is relativistic.

Though the WKB approximation of the Schrödinger equation is a common 
topic of many quantum mechanics textbooks, its application in the relativistic 
domain is lacking. To the author’s best knowledge, the first generalization of 
the WKB method to relativistic Hamiltonian was presented in ref.  [26], where 
the WKB probability distributions for Hamiltonians involving arbitrary kinetic 
energy are derived. In particular the kinetic term 

√
m2 + p2 and its m → 0 limit 

were discussed in [26], in the context of the HO.
A bit later in this section, we will derive an analytic WKB energy eigenvalue 

expression based on the classical version of Eq. (6), for arbitrary m and k values. 
First, however, we find it instructive to consider the ultrarelativistic m → 0 limit. 
In this limit, Eq. (6) reduces to

Note the absolute value bars that appear around p̂ ! Note also that the parameter m 
no longer appears anywhere in this expression. These details are very important.

From Eq. (30), the classical Hamiltonian contours for energy E are found to be

This is easy to integrate over x, between the two turning points at xtp = ±
√
2E∕k , to 

obtain the requisite classical action-energy relationship,

The semiclassical quantization condition applied to Eq. (32) then yields

Note that Eq. (33) above is identical to Eq. (29), except with a slightly different (and 
smaller) prefactor—which is reduced from 2 to about 1.66608. In any event, the 
above WKB analysis further confirms the validity of the En ∝ m0n2∕3 scaling law in 
the m → 0 limit.

The above n2∕3 scaling law will look very familiar to those schooled in uniform 
semiclassical approximation theory  [23–25]. In this approach, exact analytical 
solutions for linear-potential systems are used in the vicinity of classical turn-
ing points, in order to “regularize” semiclassical solutions between the tunneling 
and classically allowed regions of space. Of course, those analytical solutions are 
well-known to be Airy functions. On the “classically allowed” side of the turning 
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point, the Airy functions oscillate, with varying phase that exhibits the 2/3-power 
scaling law in the semiclassical limit [23–25].

But what does this have to do with our current, relativistic application? When 
viewed from a Fourier-transformed perspective, Eq. (30) clearly becomes a non-rel-
ativistic Schrödinger equation with “mass” mmom = (1∕k) and “potential energy” 
Vmom(p) =∣ p ∣ . This is not quite a linear potential, but almost; in particular, the 
momentum-space solutions are comprised of piecewise Airy functions on either side 
of p = 0 [27]. Moreover, this “V-shaped” momentum potential clearly gives rise to 
discrete bound states, whose boundary conditions at p = 0 imply that this boundary 
point must either correspond to an Airy function extremum or zero—corresponding, 
respectively, to the even- or odd-n solutions. Such analysis leads to the following, 
remarkably simple exact analytic formula in the m → 0 limit,

where an denotes the location of the corresponding Airy extremum or zero, as 
appropriate.

Table 1 presents WKB and exact energy levels for the ultrarelativistic or m → 0 
Hamiltonian of Eq.  (30), for several low-lying energy levels, as computed using 
Eqs.  (33) and (34), respectively. As is typical for WKB approximations, the worst 
error is for the ground state energy—although even here, the WKB prediction over-
estimates by less than 10%. Error magnitudes decrease very quickly thereafter with 
increasing n—as is also typical for WKB. A bit more interesting is the fact that 
this decrease is not entirely monotonic, and also changes sign with even/odd n—
no doubt due to the alternation from Airy function extrema to zeros. All in all, the 
WKB results are seen to comprise an excellent approximation to the exact results.

We conclude this section with a derivation of the WKB energy levels for the gen-
eral, or arbitrary-mass, HO system. The semiclassical procedure followed is exactly 

(34)En = −an

(
k

2

)1∕3

,

Table 1  Energy levels for the 
limit m → 0 , from the exact 
analytic formula (Eq. 34) 
and the WKB approximation 
(Eq. 33). The last column shows 
the difference between the two 
energy values

n Eq. (34) Eq. (33) ΔEn

0 0.80861652 0.88534138 + 0.07672486
1 1.85575708 1.84158428 - 0.01417280
2 2.57809613 2.58875389 + 0.01065776
3 3.24460762 3.23973476 - 0.00487287
4 3.82571528 3.83064966 + 0.00493438
5 4.38167124 4.37897587 - 0.00269537
6 4.89182029 4.89485311 + 0.00303282
7 5.38661378 5.38482509 - 0.00178869
8 5.85209467 5.85342479 + 0.00133013
9 6.30526301 6.30395584 - 0.00130717
10 6.73731639 6.73891986 + 0.00160347
11 7.16128273 7.16026868 - 0.00101405
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the same as that described above for the m → 0 special case. Of course, the classical 
Hamiltonian contours are now mass-dependent, and found to be

which clearly reduces to Eq. (31) in the m → 0 limit.
Equation (35) above can also be integrated over the interval defined by the req-

uisite turning point limits, which are still given by xtp = ±
√
2E∕k . This results in a 

more complicated expression than Eq. (32), i.e.

where K[ ] and E[ ] are complete elliptic integrals of the first and second kind, 
respectively. Note that in the m → 0 limit, E[1] = 1 , so that Eq.  (36) reduces to 
Eq. (32).

We are unable to invert Eq.  (36), to obtain a closed form expression for EWKB
n

 
of the form of Eq.  (33). Nevertheless, such values can easily be obtained numeri-
cally, using the half-integer quantization condition to replace the left-hand-side of 
Eq. (36).

5  Exact Numerical Results, and Comparisons

As described in Sect.  1, we have also performed exact numerical calculations of 
the exact relativistic quantum HO eigenstate solutions of Eq. (6). This can easily be 
achieved, despite the square-root operator, if a particle-in-a-box basis set is used—in 
terms of which the kinetic energy matrix representation becomes diagonal (and pos-
itive-definite). Likewise, the matrix representation of the potential energy—though 
not diagonal—is nevertheless exact, leading to perfectly variational convergence 
with increasing basis size. In this sense, the present method appears to be more 
straightforward, at least for the quadratic potential, than the previous methods based 
on matrix [28, 29] or mesh [30, 31] representations of the spinless Salpeter equation.

The particle-in-a-box basis functions used are as follows:

Here, L denotes the width of the box, which is placed symmetrically such that x 
ranges over −L∕2 ≤ x ≤ L∕2 . Individual basis functions are labeled by the index, 
N = 1, 2,… . Note that upper case basis labels, N, are used to distinguish from the 
lower case n labels used for HO eigenstates and energy levels.
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In terms of the above basis, the matrix representation of the kinetic energy of 
Eq (6) is diagonal, as discussed, with individual matrix elements, KNN , given by

The corresponding potential energy matrix representation has diagonal elements,

and off-diagonal elements,

where N ≠ N′.
For ℏ = k = 1 , and a set of mass values lying in the interval 10−6 ≤ m ≤ 103 , the 

eigenstates of the matrix HNN� = KNN��NN� + VNN� were computed using Mathemat-
ica [32] and a fortran code of the Jacobi eigenvalue algorithm [33]. For all reported 
energy levels, the box width L and the basis size Nmax were increased independently, 
until numerical differences were smaller than 10−6 . Convergence criteria and tables 
of low-lying numerically converged energy levels, as used in the figures that follow, 
may be found in the Supplemental Material. Note that in the increasingly “anhar-
monic” relativistic limit, numerical convergence becomes increasingly difficult.

In order to simplify the exposition that follows, the exact numerical values 
obtained as described above are referred to as the “exact numerical” results, whereas 
those obtained with the formalism presented in Sect. 3 are called the “self-consist-
ent GPPP” (SC-GPPP) values. However, note that the latter are not the exact GPPP 
solutions from the GPPP Eq. (13), but rather, those obtained using the approximate 
self-consistent procedure, computed using Eq. (27).

Figure  2 shows the eleven lowest-lying energy levels as computed using the 
exact numerical method (open shapes)—in units of ℏ� , and for four different m val-
ues. Also indicated are the corresponding SC-GPPP energies from Eq.  (27) (solid 
shapes). Finally, the thin solid line indicates the non-relativistic or large-m limit.

Several important trends are evident. First, all relativistic energies lie below their 
non-relativistic counterparts, as they should. Second, these discrepancies increase as 
either: (a) the mass m decreases; (b) the excitation n increases. With regard to (b), 
this corresponds to a transition from a linear n to n2∕3 dependence, vide Eq. (29) and 
the discussion just below. All of these trends are consistent with expectations.

In comparing the exact numerical and SC-GPPP energies, similar trends also 
hold, in the sense that the latter systematically overestimate the former—although 
these two relativistic predictions are generally in quite good agreement with one 
another, and certainly closer to each other than to the non-relativistic values. Also, 
the discrepancy trends (a) and (b) above also still hold true.

A similar comparison to that of the other two figures is also provided in Fig. 3. 
Here, we present absolute energies (left vertical axis) along with energies rescaled 
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by ℏ� , for the three lowest-lying energy levels. Thus, the figure allows a detailed 
comparison for the entire mass interval. First note that in units of ℏ� the constancy 
and even spacing of the energy levels are lost when the oscillator enters the (ultra)
relativistic domain. This is a consequence of the increasingly weak dependence of 
the energy on particle mass for m → 0 . In addition to exact numerical results, the 
SC-GPPP results from Eq. (27) are also presented in Fig. 3. These are found to be 
always an overestimate. Not surprisingly, the discrepancy increases with increas-
ing n and decreasing m. What is quite remarkable, however, is what happens in the 
ultrarelativistic limit—i.e., energy levels represented by all sets of curves become 
completely independent of particle mass—exactly as predicted in Sect.  3. Also 
shown in Fig. 3 are the values from the WKB theory, computed using Eq. (36). The 
agreement between the WKB and exact results is remarkable and improves with 
increasing n, as expected.

This effect can be seen more quantitatively in Table  2, showing a comparison 
of relativistic HO ground state energies, E0 , for different mass values, m, as com-
puted using different methods. Note that in addition to the exact numerical method, 
and the SC-GPPP method of Eq.  (27), we also present exact GPPP results in this 
table, obtained using the new method described at the end of Sect. 2.1. These are 
the only exact GPPP results presented in this paper. Note that for both the GPPP and 
SC-GPPP calculations, rescaled mass values, �0 , are also readily available—from 
Eq. (15).

The table clearly indicates that for a given method and quantity, all values 
approach constants in the ultrarelativistic limit, m → 0 . The rescaled mass values 
are particularly illuminating. In every case, 𝜇0 > m , as required. However, for the 
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Fig. 2  Comparison of 11 lowest-lying energy levels of the k = 1 relativistic HO system, in units of ℏ� , as 
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larger two mass values, the relative increase is small, whereas in the ultrarelativistic 
limit, finite values on the order of �0 ≈ 0.2 are approached, even as m itself becomes 
arbitrarily small. Another interesting observation here is that the approximate SC-
GPPP solutions are actually closer to the exact numerical results than are the exact 
GPPP results—at least for this ground state comparison. Moreover, the relative dif-
ference between the errors of the two approximations is great in the m → 0 limit, but 
all but vanishes for m → ∞—for reasons that currently elude us.

Note that all of the methods described here allow for calculation of eigenstate 
wavefunctions as well as energy levels. Figure 4 indicates wavefunction probability 
densities for several different ℏ = k = m = 1 HO excited eigenstates, as computed 
for the non-relativistic, exact numerical relativistic, and SC-GPPP methods. The 
exact numerical and SC-GPPP eigenstates appear to be more localized in the poten-
tial well, due to the larger rescaled mass of the relativistic particle. As expected, 
this occurs to an extent that is dramatically increased with increasing n. In addition, 
keeping with SC-GPPP’s “intermediate” role between non-relativistic and exact 
relativistic solutions (as also exhibited in the energy spectrum), we find that the SC-
GPPP compression is less pronounced than that of the exact numerical solutions.

The shape of the density plots is also worth commenting on. Given that 
�SC−GPPP is in fact equivalent to a mass-rescaled non-relativistic HO eigenstate, 
the form of its density is identical to that of the latter—except compressed. This 
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responding to that axis (Color figure online)
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can be seen clearly in the figure. On the other hand, density plots for the exact 
numerical solutions are qualitatively different, in that all of the interior peaks are 
of nearly equal height—as opposed to the familiar Hermite polynomial form, 
which drops down gently as one approaches the origin. This highly interesting 
feature of the exact relativistic case can be accounted for using the so-called 
“bipolar formalism,” [34] as follows.

First, it is helpful to think of the actual eigenstate solutions � as standing 
waves, each comprised of two equal and oppositely-moving traveling waves, �± , 
with � = �+ + �− . The traveling wave densities, �2

±
 , are equal and smoothly var-

ying, and correspond to the “envelope” of the standing wave. For example, if � is 
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Fig. 4  Comparison of wavefunction probability densities for several different ℏ = k = m = 1 relativistic 
HO system eigenstates, as computed using: exact numerical method (black dash-dotted lines); SC-GPPP 
method of Eq. (26) (red solid lines); non-relativistic limit (black dotted lines) (Color figure online)

Table 2  Comparison of ground 
state energy levels, E0 , of 
the ℏ = k = 1 relativistic HO 
system, for several different 
mass values, m, as computed 
using three different methods. 
Some corresponding rescaled 
mass values, �0 , are also 
indicated

aGPPP values from Eqs. (13) and (15).
bSC-GPPP values from Eq. (27).
cExact numerical values

m �a

0
E
a

0 �b

0
E
b

0
E
c

0

0.001 0.186 1.160346 0.251 0.998668 0.807669
0.01 0.192 1.141285 0.257 0.986843 0.798980
0.1 0.263 0.974100 0.321 0.882888 0.727693
1.0 1.104 0.475763 1.118 0.472834 0.441052
3.0 3.069 0.285430 3.071 0.285303 0.279538



 Foundations of Physics           (2022) 52:29 

1 3

   29  Page 18 of 20

a sinusoidal particle-in-a-box state, then the corresponding �± are the associated 
right- and left-traveling plane waves, whose density is uniform throughout space.

More generally, the envelope density function �2
±
(x) in the classically allowed 

region of space is nearly inversely proportional to the local classical velocity field, 
v(x). For the classical non-relativistic HO system, the kinetic energy—and therefore, 
velocity—is of course greatest at x = 0 , and then tapers off as one approaches the 
classical turning points. The classical relativistic HO system is similar—except that 
near x = 0 , the velocity can be much smaller than in the non-relativistic case, and is, 
of course, limited by a maximum finite value, c. Relativity thus serves to flatten the 
variation in the velocity field v(x)—and thereby, also, the corresponding envelope 
density function.

6  Conclusions

The quantum HO problem is one of a handful of fundamental applications taught 
in every quantum mechanics course. Yet, a practical relativistic generalization has 
seemingly eluded us for decades. According to conventional wisdom, one is forced 
into the dilemma of having to choose either second-order operators in time (e.g. 
Klein–Gordon) leading to negative energy solutions and far worse paradoxes, or 
square-root operators whose solution is deemed “impractical” except in the poten-
tial-free case.

The present study is part of an ongoing effort to break through this deadlock by 
dismantling the second tine of the above fork—i.e., by rendering treatment of the 
square-root operator practical, and even Schrödinger-like. Several exact and approxi-
mate methods have been proposed by us, with some of each implemented in the 
present work. Indeed, this study represents the first time that such exact relativistic 
methods have been applied to a system with an external potential, to our knowledge. 
That said, there is clearly a connection with earlier solution methods for the spinless 
Salpeter equation, widely used to explore model potentials of hadrons as bound state 
of quarks.

In particular, exact numerical solutions of the covariant stationary state equation 
of Eq. (6) were obtained for a relativistic particle operating in a quadratic HO poten-
tial. By working in a particle-in-a-box basis representation, the square root operator 
contribution poses no special numerical difficulty, and conventional non-relativistic 
numerical eigensolver methods may be employed.

The exact numerical relativistic solution eigenenergies are found to be lower than 
the corresponding non-relativistic energies, with the discrepancy increasing in the 
relativistic limit of decreasing mass, m, or increasing excitation n—with the latter 
necessarily implying a nonlinear spectrum. Thus, in units of ℏ� the well known 
constancy and even spacing of the HO energy levels are no longer observed at the 
(ultra)relativistic domain. These trends can be accounted for using simple intuitive 
arguments. Other, much more intriguing trends—such as the m0n2∕3 scaling of spec-
tral frequencies that emerges in the m → 0 limit, and the uniformity of the relativ-
istic density function peak heights—require more subtle but still largely straightfor-
ward analyses.
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We have also employed two natural approximation methods in this work—e.g., 
GPPP, and SC-GPPP. In both cases, the methods are fully general, but we here 
exploit some simplifications that arise only in the HO case. Whereas SC-GPPP is 
actually a further approximation to GPPP, it counterintuitively provides the more 
accurate results, at least for the relativistic HO ground state energies. In any event, 
both approximations are quite good, and certainly a lot closer to the exact results 
throughout the very broad range of mass values considered ( 10−6 ≤ m < 103 ) than 
are the non-relativistic results. Finally, the WKB semiclassical theory for the HO 
problem was extended to the (ultra)relativistic domain, and approximate and exact 
semiclassical expressions for the energy levels of a relativistic HO were derived. 
The energy levels computed with the relativistic WKB formulas are in very good 
agreement with the other methods here presented.

We authors feel that the results offered here—presenting a continuous unified 
description of the HO as it undergoes a nine-order-of-magnitude transition from 
the non-relativistic to ultrarelativistic regimes—may be of strong interest to a range 
of scientific researchers, for reasons both practical and fundamental. In addition to 
this—and of no less import—is the pedagogical value that this approach may also 
provide. It could be of great benefit to undergraduate and graduate physics students, 
struggling to understand even the basic consequences of merging Quantum Mechan-
ics with the Special Theory of Relativity—as indeed, so many of their forebears 
before them have also struggled.
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