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Abstract 
A Schrödinger-like equation for a single free quantum particle is presented. It 
is argued that this equation can be considered a natural relativistic extension 
of the Schrödinger equation for energies smaller than the energy associated to 
the particle’s mass. Some basic properties of this equation: Galilean inva-
riance, probability density, and relation to the Klein-Gordon equation are 
discussed. The scholastic value of the proposed Grave de Peralta equation is 
illustrated by finding precise quasi-relativistic solutions for the infinite rec-
tangular well and the quantum rotor problems. Consequences of the 
non-linearity of the proposed equation for the quantum superposition prin-
ciple are discussed. 
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1. Introduction 

Since the discovery of the quantum wave mechanics by Erwin Schrödinger in 
1925, the Schrödinger equation has been often used for introducing the funda-
mentals of quantum mechanics [1] [2] [3] [4] [5]. The one-dimensional 
Schrödinger equation for a free particle with mass m is given by the following 
equation [1] [2] [3] [4] [5]: 

( ) ( )
2 2

2, , .
2Sch Schi x t x t

t m x
ψ ψ∂ ∂

= −
∂ ∂



                 (1) 

where ℏ is the Plank constant (h) divided by 2π. However, the Schrödinger equ-
ation is not Lorentz invariant but Galilean invariant [6]; therefore, a relativistic 
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quantum mechanics cannot be based on Equation (1). A fully relativistic quan-
tum theory requires to be funded on equations that are valid for any two observ-
ers moving respect to each other at constant velocity. In contrast, the Galilean 
invariance of Equation (1) means that two such observers will only agree in the 
adequacy of Equation (1) for describing the movement of a massive free quan-
tum particle when the relative speed between the observers (Vo) is much smaller 
than the speed of the light in the vacuum (c). In practice, this is not a terrible li-
mitation of the Schrödinger equation because up to today humans have been 
only able to travel at speeds much smaller than c. This is one of the principal 
reasons why the Schrödinger equation is still relevant almost 100 years after its 
discovery. However, as it will be discussed in Section 2, there is another impor-
tant limitation of Equation (1): it describes a particle in which linear momentum 
(p) and kinetic energy (K) are related by a classical relation that is not valid at 
relativistic speeds [1] [2] [3] [6]. The famous relativistic equation Em = mc2, 
where Em is the energy associated to the mass of a particle [7] [8], implies the 
equivalence between mass and energy. This equivalence has profound implica-
tions for the formulation of any relativistic quantum mechanics theory. When 
the kinetic energy of a free particle with mass m equals the energy associated to 
the mass of the particle, i.e., K = mc2, a second particle with the same mass can 
be created from the kinetic energy of the original particle; therefore, the number 
of particles may not be conserved in a fully relativistic quantum theory [2] [8] 
[9]. A common argument used for guiding the search for the correct Lorentz in-
variant basic equation of a relativistic quantum mechanics is that in such equa-
tion the time and spatial variables should appear on equal footing as it happens 
in the Lorentz transformations [8] [9]. For instance, in contrast to Equation (1), 
in the Lorentz invariant Klein-Gordon equation does not appear the first partial 
derivative respect to time but the second one as shown in Equation (2), which is 
the Klein-Gordon equation for free particle [8] [9]: 

( ) ( ) ( )
2 2 2 2

2 2 2 2

1 , , , .KG KG KG
m cx t x t x t

c t x
ψ ψ ψ∂ ∂

= −
∂ ∂ 

          (2) 

Unfortunately, Equation (2) does not formally look at all like Equation (1), 
thus masking how the Klein-Gordon equation becomes the Schrödinger equa-
tion when the particle moves at speeds (V) much smaller than c. Moreover, there 
are solutions of Equation (2) with unwanted properties like superluminal phase 
velocity, negatives energies, and associated with negative probabilities [8] [9]. In 
Section 2, the consequences of an intriguing natural extension of the Schrödin-
ger equation to quasi-relativistic speeds are explored. The term “qua-
si-relativistic” is used in this work as meaning a particle moving at so large 
speeds that it is necessary to use the correct relativistic relation between p and K 
but still the number of particles is constant because K < mc2. The following equ-
ation is the center of attention here: 

( ) ( ) ( )
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               (3) 
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where: 

2

2

1 .
1

V
V
c

γ =

−

                         (4) 

Clearly, the Grave de Peralta equation (Equation (3)) exactly coincides with 
the Schrödinger equation (Equation (1)) when V c

. As it will be discussed in 
Section 3, the formal similitude between Equation (3) and Equation (1) imme-
diately suggest that Equation (3) may be Galilean invariant and that probabilities 
can be associated to ψ in the same way that it is done for ψSch [1] [2] [3] [4]. 
However, Equation (3) describes the movement of a massive free quantum par-
ticle which momentum and kinetic energy are related by the correct relativistic 
relation. Therefore, Equation (3) extent the range of applications of the 
Schrödinger equation to quasi-relativistic speeds. Moreover, the formal simili-
tude between Equation (3) and Equation (1) provides a simple approach for ob-
taining quasi-relativistic corrections to the solutions of the Schrödinger equa-
tion, for a whole class of problems where the square of the particle speed (V2) is 
constant. Two interesting examples illustrating this point are presented in Sec-
tions 4 and 6. In both instances, explicit quasi-relativistic solutions of Equation 
(3) can be found with no more complexity than in standard textbook examples 
of solvable Schrödinger equation problems [1] [2] [3] [4] [5]. This illustrates the 
scholastic value of the Grave de Peralta equation for introducing learners to the 
intricacies of the fully relativistic quantum mechanics and quantum fields 
theory. In addition, it is demonstrated in this work that a plane wave solution of 
Equation (3) is subluminal and that this solution is related to a plane wave solu-
tion of Equation (2) by the following relationship: 

( ) ( )
2

, ., ,e miw t
mKGx t x t mcwψ ψ= =



                (5) 

where: 
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( ) ( )
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ψ

−

−

=

=





                      (6) 

The plane waves ψ and ψKG in Equation (6) are solutions of Equations (3) and 
(2), respectively. E, K and p are the relativistic total and kinetic energy and the 
linear momentum of a free particle, respectively [7] [8]. It is worth noting that 
two solutions of Equation (3) corresponding to two different particle’s speeds 
are not simultaneously solution of the same equation but solutions of two 
slightly different equations only differing in the value of γv. Even when the full 
discussion of this topic is outside of the scope of this work, due to its relevance, 
the implications of the non-linearity of Equation (3) for the quantum mechanics 
superposition principle are briefly discussed in Section 5. Finally, the conclu-
sions of this work are given in Section 7. 
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2. Schrödinger Equation Extension  
to Quasi-Relativistic Speeds 

Formally, Equation (1) can be obtained from the classical relation between K 
and p for a free particle when V c

 [1] [2] [3] [6]: 
2

, .
2
pK p mV
m

= =                        (7) 

Then, Equation (1) is obtained by substituting K and p by the following ener-
gy and momentum quantum operators [1] [2] [3]: 

ˆ ˆ ˆ, .E K i p i
t x
∂ ∂

= = = −
∂ ∂
                      (8) 

By analogy, Equation (3) can be simply obtained combining Equation (8) with 
the relation between the relativistic expressions of the kinetic energy and the li-
near momentum of a free particle traveling at quasi-relativistic speeds: 

( )
2

, .
1 V

V

pK p mV
m

γ
γ

= =
+

                   (9) 

Equation (9) can be easily obtained from the following well-known relativistic 
equations [7] [8]: 

( )( )2 2 4 2 2 2 2 2 2  ,E m c p c E mc E mc p c− = ⇔ + − =           (10) 

2 2, .VK E mc E mcγ= − =                    (11) 

The Klein-Gordon equation can formally be obtained from the first expres-
sion of Equation (10) by assigning the temporal partial derivative operator in 
Equation (8) to the total relativistic energy (E) of the free particle, which is the 
sum of its kinetic energy plus the energy associated to the mass of the particle [7] 
[8]. However, if one chooses to assign this operator to K, as it is done when ob-
taining the Schrödinger equation, then from Equations (9) and (8) follows Equa-
tion (3). This is not the customary choice, but in this work instead of simply 
discharging this option, it is explored the consequences of this natural choice. 
For instance, a simple substitution of ψ(x, t) given by Equation (6) in Equation 
(3) results in Equation (9), thus demonstrating that ψ(x, t) given by Equation (6) 
is a plane wave solution of Equation (3), which phase velocity Vph = K/p is re-
lated to the velocity of the particle by the following expression: 

.
1

V
ph

V

V V
γ

γ
=

+
                        (12) 

Consequently, Vph < V < c; i.e., the plane wave ψ(x, t) given by Equation (6) is 
subluminal and, as happen for a plane wave solution of the Schrödinger equa-
tion, Vph ~ V/2 when V c

. In contrast, the substitution of ψKG(x, t) given by 
Equation (6) in Equation (2) results in Equation (10), thus demonstrating that 
ψKG(x, t) given by Equation (6) is a plane wave solution of Equation (2), which 
phase velocity VKG = E/p is given by the following expression: 

https://doi.org/10.4236/jmp.2020.112012


L. Grave de Peralta 
 

 
DOI: 10.4236/jmp.2020.112012 200 Journal of Modern Physics 
 

2 2

  .V
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V

mc cV
mV V

γ
γ

= =                       (13) 

Consequently, ψKG(x, t) is superluminal because VKG > c. Equations (5) and (6) 
suggest that the time-independent equations corresponding to Equations (2) and 
(3) are equal. In fact, looking for solutions of the form X(x)T(t) of Equations (1),  

(2), and (3), where ( ) e
i Kt

T t
−

=   for Equations (1) and (3) but ( ) e
i Et

T t
−

=   
for Equation (3), produces the same time-independent equation in the three 
cases: 

( ) ( )
2

2
2

d 0, .
d

pX x X x
x

κ κ+ = =


                (14) 

As it will be illustrated below, often X(x) and κ are determined solving Equa-
tion (14) under adequate boundary conditions; then the possible values of p are 
determinate from the possible values of κ. However, the relation between K and 
p are different for non-relativistic and quasi-relativistic speeds; therefore, the 
solutions of Equations (1) and (3) have equal spatial dependences but different 
values of K. Also, the relation between E, K, and p are different for qua-
si-relativistic speeds; therefore, the solutions of Equations (2) and (3) have equal 
spatial dependences but different values of K and E. Equations (9) and (10) can 
be obtained from each other using Equation (11); however, Equation (10) admits 
solutions with positive and negative energies but K only can be positive in Equa-
tion (9). This is in correspondence to the presence of a second-order temporal 
partial derivative in Equation (2), which determines that Equation (2) has solu-
tions with positive and negative energies [8] [9]. In contrast, there is a first-order 
temporal partial derivative in Equations (1) and (3). This determines that Equa-
tions (1) and (3) only have solutions with positive energies. It is straightforward 
to show that Equation (5) can be obtained from Equations (11) and (6). Equa-
tion (5) gives a simple recipe from obtaining a plane wave solution of Equation 
(3) from a plane wave solution of Equation (2) with positive energy and vice 
versa. 

3. Probability Density and Galilean Invariance 

Due to the formal similitude between Equation (3) and Equation (1), one can 
demonstrate that a probability continuity equation can be associated to the solu-
tions of the Grave de Peralta equation in the same way that it is done for the 
Schrödinger equation [1] [2] [3] [4]. In short, one can associate a probability 
density ρ(x, t) to a normalized solution of Equation (3) in the following way: 

( ) ( ) ( ) ( ), , , , , d 1.x t x t x t x t xρ ψ ψ ρ
+∞∗

−∞
= =∫             (15) 

The probability density corresponding to the Schrödinger equation is 
well-defined when both ψ/(2m) and ψ*/(2m) tend to zero when |x| is very large 
[1]. Similarly, provided that V2 and γV are constant, it can be shown than ρ(x, t) 
defined by Equation (15) is well-defined when both ( )1V mψ γ +   and 

https://doi.org/10.4236/jmp.2020.112012


L. Grave de Peralta 
 

 
DOI: 10.4236/jmp.2020.112012 201 Journal of Modern Physics 
 

( )1V mψ γ∗  +   tend to zero when |x| is very large, which is a less restrictive 
condition when 1Vγ   than the one required for the Schrödinger equation. 
The rate of the temporal variation of ρ(x, t) is then given by the following ex-
pression: 

* *
* .

t t t
ψ ψρ ψ ψ∂ ∂ ∂

= +
∂ ∂ ∂

                    (16) 

The temporal derivatives of ψ and ψ* in Equation (16) can be substituted by 
expressions containing spatial derivatives of ψ and ψ* by using Equation (3) and 
its complex conjugate equation. In this way Equation (16) can be transformed in 
the following one: 

( )
2 * 2

*
2 2 .

1Vt mi x x
ψ ψρ ψ ψ

γ
 ∂ ∂ ∂

= − ∂ + ∂ ∂ 

               (17) 

But [1]: 
2 * 2 *

* *
2 2 .

x x xx x
ψ ψ ψ ψψ ψ ψ ψ

 ∂ ∂ ∂ ∂ ∂
− = − ∂ ∂ ∂∂ ∂  

             (18) 

Then using Equation (18) permits to rewrite Equation (17) as the one-dimensional 
(1D) probability continuity equation [1]: 

( )
*

*0, .
1V

J J
t x mi x x

ψ ψρ ψ ψ
γ

 ∂ ∂ ∂ ∂
+ = = − ∂ ∂ + ∂ ∂ 

          (19) 

Like for the Schrödinger equation [1], it is easy to show that Equation (19) can 
be generalized to three dimensions (3D). The absence of negative values of ρ and 
J is a consequence of the absence of a second time derivative in the Equation (3) 
[8] [9]. This concludes the demonstration that a probability continuity equation 
can be associated to the solutions of Equation (3) as it is done for the Schrödin-
ger equation. In what follows a qualitative discussion about the Galilean inva-
riance of Equation (3) is presented. A more formal discussion about this topic is 
presented in Annex A. At a first sight, Equation (3) does not look neither Gali-
lean nor Lorentz invariant. Equation (3) should not be Lorentz invariant because 
in Equation (3) the temporal and spatial partial derivatives do not have the same 
order [8] [9]. In contrast, it is well known that Equation (2) is Lorentz invariant 
[8] [9]. The formal similitude between Equations (3) and (1) suggests that Equa-
tion (3) may be Galileo invariant, but there is a problem. A well-defined Equa-
tion (3) requires a constant value of V2 and γV. As it will be illustrated in Sec-
tions 4 and 6, there are very interesting problems where this requirement is ful-
filled. For instance, one of these problems is the description of the movement of 
a massive quantum particle confined in a 1D box, which is at rest respect to an 
inertial reference frame S. An observer at rest respect S may think about the par-
ticle as moving with constant quasi-relativistic speed (V) but changing direction 
each time the particle bounced in the box’s walls. However, a second observer 
moving parallel to the box with velocity +Vo respect to the first observer, but at 
rest respect to a second inertial reference frame S', would see the particle moving 
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sometimes with speed V+′  and sometimes with speed V−′ , where [7] [8]: 

2

.
1

O

O

V V
V

VV
c

±

± −′ =
±

−
                       (20) 

Thus, the second observer would not find well-defined the value of V'2 and 

Vγ ′  that should be introduced in Equation (3). However, at quasi-relativistic 
particle’s speeds ~ ~ VV V+ −′ ′  when oV V . Consequently, at quasi-relativistic 
particle’s speeds when oV V , both observers will see the particle moving with 
(almost) the same values of V2 and γV. Moreover, in this quasi-relativistic limit p' 
~ p and K' ~ K. Consequently, both observers will agree in that they should solve 
Equation (3) for finding the possible quantum states of the massive particle 
moving at quasi-relativistic speeds inside of the 1D box. i.e., Equation (3) is Ga-
lilean invariant. Nevertheless, as it will be shown below, Equation (3) can be 
used for solving quasi-relativistic quantum problems. 

4. Infinite Rectangular Well 

An important but simple problem often solved in quantum mechanics textbook 
is a particle moving inside an infinite rectangular well at speeds much smaller 
than c [2] [3] [4] [5]. Using Equation (3), this problem can be solved for qua-
si-relativistic speeds following similar procedures than in the quantum mechan-
ics textbooks for V c

 [2] [3] [4] [5]. One should look for a wavefunction that 
is identically null outside of the well, null at x = 0 and x = L, and satisfies Equa-
tion (3) in the interval 0 < x < L. Solving Equation (3) means finding the quan-
tum states of a free particle with constant values of K. But due to Equation (9), a 
free particle moving with constant kinetic energy must have constant value of V2 
and vice versa; therefore, the solutions of Equation (3) correspond to quantum 
states of a particle moving with a constant value of V2. Separating variables and 
substituting in Equation (3) results: 

( ) ( ), e ,
i Kt

x t X xψ =                        (21) 

( ) ( ) ( ) ( ) ( )
2

2
2 2

1d 0, , 0 0.
d

V mK
X x X x X X L

x
γ

κ κ
+

= − = = = =


   (22) 

Looking for solutions of Equation (22) corresponding to constant values of K 
and V2, one can find that: 

( ) ( ), e , , 1, 2,n
i K t

n n
nx t X x n
L

ψ κ π
= = =

             (23) 

where: 

( ) 2 sin ,n
nX x x

L L
π =  

 
                    (24) 

( ) ( )

2
2

2 .
1 2

n

n
V

hK n
m Lγ

=
+

                   (25) 
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From Equation (24) follows that the spatial dependence of ψn(x, t) coincide 
with the spatial dependence of the wavefunction calculated using the Schrödin-
ger equation [2] [3] [4] [5]. As expected, Equation (25) gives the know values of 
the particle’s energies at low speeds when γV ~ 1 [2] [3] [4] [5]. From Equation 
(25) and the relativistic equation, ( ) 21VK mcγ= − , follow: 

2
2 2 2

1 .
n

C
V n

L
λ

γ  = +  
 

                      (26) 

where λC = h/(mc) is the Compton wavelength [7] [8]. Equation (26) gives 
2 2Vγ =  when n = 1 and L = 2λC; evaluating for these values Equation (25) re-

sults in K1 ~ 0.4mc2, which is smaller than the value K1 ~ 0.5mc2 that would be 
obtained, using the Schrödinger equation, for the ground state energy of a par-
ticle of mass m confined in an infinite rectangular well of length L = 2λC. More-
over, this result is precise because the calculated energy of the ground state is 
clearly quasi-relativistic. In contrast, Equation (26) gives 2 5Vγ =  when n = 1 
and L = λC; evaluating for these values Equation (25) results in K1 ~ 1.2mc2. The 
number of particles may not be constant at these energies. This result for a 1D 
infinite rectangular well can easily be extended to the 3D infinite rectangular 
well as it is done for the Schrödinger equation [4] [5]. Consequently, Equation 
(3) establishes a fundamental connection between quantum mechanics and 
especial theory of relativity: no single particle with mass can be confined in a 
volume much smaller than (λC)3 because when this occurs, K > mc2 and the 
number of particles may not be constant anymore; therefore, a single 
point-particle with mass cannot exist. Point-particles with mass can only exist in 
fully relativistic quantum field theories where the number of particles is not con-
stant. This is true for an electron, a quark, and probably may also be true for a 
black hole and the whole universe at the beginning of the Big Bang. This is con-
sistent, for instance, with the confinement of an electron in the Hydrogen atom 
because for an electron λCe ~ 2.4 × 10−3 nm, which is ~20 times smaller than the 
radius of the Hydrogen atom, rB ~ 5.3 × 10−2 nm [1] [2] [3] [4] [5]. Combining 
Equations (25) and (26) allows for rewritten Equation (25) in the following way: 

2
2

2 2
.

21 1
2

n

C

hK n
n Lm
L
λ

=
     + +        

               (27) 

When 2 CL nλ , Equation (27) gives the know values of the energies calcu-
lated using the Schrodinger equation for a particle in an infinite well [2] [3] [4] 
[5]. However, in general, the values of Kn calculated using Equation (27) are 
smaller than the ones calculated using the Schrödinger equation. This in excel-
lent correspondence with more involved numerical results obtained solving the 
Dirac equation for the 1D infinite rectangular well [10]. Moreover, and more 
significant for experiments, the differences in energies between different energy 
levels are slightly different when obtained using Equations (1) and (3). 
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5. Superposition Principle 

Besides allowing to obtain precise quasi-relativistic solutions of several interest-
ing problems, like tunneling through a barrier and other problems with piece-
wise constant potentials, following similar procedures than in the quantum me-
chanics textbooks for V c

 [1] [2] [3] [4] [5], Equation (3) may describe a 
new physics. The Schrödinger equation is linear, this means, for instance, that if 
ψSch1(x, t) and ψSch2(x, t) are two solutions of Equation (1) for a particle in an in-
finite rectangular well corresponding to different values of V2, then the wave-
function ( ) ( ) ( )1 2, , ,Sch Sch Schx t a x t b x tψ ψ ψ= + , where a and b are complex 
numbers such that 2 1a b+ = , is also a solution of Equation (1). ψSch(x, t) 
represents a legitime possible state of a particle in an infinite well. The superpo-
sition state represented by ψSch(x, t) is often interpreted as a state where the par-
ticle is neither in the state ψSch1(x, t) where the kinetic energy is K1 nor in the 
state ψSch2(x, t) where the kinetic energy is K2, but somehow the particle is simul-
taneously in both states. The existence of superposition states like ψSch(x, t) is 
then a fundamental consequence of the linearity of Equation (1) with no classical 
counterpart. This exemplifies the weirdness of quantum mechanics [6] [11]. 
Moreover, the superposition state ψSch(x, t) represent a qubit, concept that is at 
the heart of current attempts to demonstrate a practical quantum computer [11] 
[12]. In contrast to the Schrödinger equation, Equation (3) is not linear. If ψ1(x, 
t) and ψ2(x, t) are two solutions of Equation (3) for a particle in a rectangular in-
finite well corresponding to different values of V 2, then strictly they are not so-
lutions of the same Equation (3) but of slightly different Equations (3) with dif-
ferent values of γV. Moreover, ( ) ( ) ( )1 2, , ,x t a x t b x tψ ψ ψ= +  is not a solution of 
any Equation (3). Consequently, if the Grave de Peralta equation is a legitime 
extension of the Schrödinger equation to the quasi-relativistic domain, then the 
current understanding of the superposition principle in quantum mechanics 
should be revised because it appears to only be valid when the particle moves at 
speeds much smaller than c. The superposition principle is a corner stone of 
quantum mechanics; therefore, one could be interested in saving the superposi-
tion principle by stretching the meaning of “solution of Equation (3)”, such that 
“ ( ) ( ) ( )1 2, , ,x t a x t b x tψ ψ ψ= +  is a solution of Equation (3)” means that there is 
a set formed by several slightly different Equations (3) and aψ1(x, t) and bψ2(x, t) 
are solutions of a slightly different Equation (3) from this set, corresponding to a 
different value of V 2 each. For instance, strictly speaking, Equations (23), (24), 
and (27) give the solutions of a set of Equations (3) for the infinite rectangular 
well. This is somehow related with Section 3 discussion about the Galilean inva-
riance of Equation (3). Strictly speaking, two observers slowly traveling with 
constant velocity respect to each other should resolve a set of Equations (3) 
which values of γV are contained in a narrow continuous interval. The adoption 
of Equation (3) as a valid description of the quantum states of a massive free 
particle then breaks with the longstanding tradition of describing the dynamics 
of a physical system using a single equation. The second Newton law and the 
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Schrödinger equation are examples of this tradition. The future of the particle’s 
wave function is determined by the Schrödinger equation and the initial condi-
tions are the only source of indeterminacy. In contrast, the dynamics of a par-
ticle is described by a whole set of similar Equations (3), which introduces a new 
source of indeterminacy in the future of the particle’s wave function. This may 
be a welcome development for the understanding of the weirdness of quantum 
mechanics. 

Alternatively, the non-linearity of Equation (3) suggests that ψ1(x, t) and ψ2(x, 
t) could be understood as corresponding to two different phases-of-a-system 
which are described by a different equation each. ψ(x, t), which is not a solution 
of Equation (3), describes them a state of the system where no one of these two 
phases exists but where somehow, when a set of identical measurements is done 
on a system which is prepared in the state ψ(x, t) each time, then a fast transition 
of the system is induced by the measurement and the system randomly transits 
either to the phase represented by ψ1(x, t) with probability |a|2 or to the phase 
represented by ψ2(x, t) with probability |b|2. In this description, the state of the 
system represented by ψ(x, t) must be different from a state where a mixture of 
the phases ψ1(x, t) and ψ2(x, t) actually exist. For instance, let’s assume that ψ1(x, 
t) and ψ2(x, t) are two solutions, of the set of Equations (3) for the infinite rec-
tangular well, with kinetic energies given by K1 and K2, respectively. Loosely bor-
rowing the words “superheated” and “supercooled” from possible phase transi-
tions in liquids, one could say that the state ( ) ( ) ( )1 2, , ,x t a x t b x tψ ψ ψ= +  cor-
responds to a state of the system which is not a solution of any Equation (3). The 
state ψ(x, t) could be formed by superheating the state ψ1(x, t) or by supercool-
ing the state ψ2(x, t). When a set of N measurements is done on the system in the 
state ψ(x, t), |a|2N times a fast system’s transition occurs from the superheated 
state to the state ψ1(x, t), and |b|2 N times the transition occurs from the super-
cooled state to the state ψ2(x, t). This point of view may motivate the search for 
the unknown equation for which ψ(x, t) is a solution. 

6. Quasi-Relativistic Quantum Rotor 

Courses of Quantum Mechanics often include how to solve the Schrödinger eq-
uation for a quantum rigid rotator, which in general is a quantum particle mov-
ing with constant speed in a sphere. Therefore, all the kinetic energy of a quan-
tum rigid rotator is rotational. Instances of the quantum rigid rotor appear when 
describing the relative movement between two particles forming a system like a 
diatomic molecule (neglecting vibrations) [5]. The 3D Schrödinger equation for 
a particle moving in a central potential Φ(r) is given by the following equation 
[1] [2] [3] [4] [5]: 

( ) ( ) ( ) ( )
2

2, , , .
2Sch Sch Schi t t r t

t m
ψ ψ ψ∂

= − ∇ +Φ
∂



 r r r          (28) 

Which natural extension to quasi-relativistic speeds is the following equation: 
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( ) ( ) ( ) ( )
2

2, , , .
2Sch Sch Schi t t r t

t m
ψ ψ ψ∂

= − ∇ +Φ
∂



 r r r          (29) 

In spherical coordinates ( ), ,r θ ϕ=r , and the Laplacian operator in Equa-
tions (28) and (29) is defined in the following way [1] [2] [3] [4] [5]: 

( )
2

2 2
,2 2

1 1 .r
r r r θ ϕψ ψ ψ∂

∇ = + ∇
∂

                  (30) 

Where: 
2

2
, 2 2

1 1sin .
sin sinθ ϕ θ

θ θ θ θ ϕ
∂ ∂ ∂ ∇ = + ∂ ∂ ∂ 

             (31) 

Using Equations (30) and (31) permits to rewrite Equation (29) in the follow-
ing way: 

( ) ( )
( )

( )
2 2 2

2
,2 2 .

1 1V V

i r r
t mr r mr θ ϕψ ψ ψ ψ

γ γ
∂ ∂

= − − ∇ +Φ
∂ + ∂ +

 

      (32) 

The rotational kinetic energy of a quantum rigid rotator is given by the second 
term in the right size of Equation (32); therefore, the first term in the right size 
of Equation (32) vanishes for a quantum rigid rotator [5]. In addition, r = rS and 
Φ(r) = Φ(rS) are constants because the radius of the sphere containing the par-
ticle trajectory (rS) is constant; therefore, choosing Φ(rS) = 0, and introducing 
the moment of inertia of a rotating mass 2

SI mr= , reduces Equation (32) to the 
following expression for a quasi-relativistic quantum rigid rotator: 

( ) ( ) ( )
2

2
,, , .

1V

i
t I θ ϕψ θ ϕ ψ θ ϕ

γ
∂

= − ∇
∂ +



               (33) 

Equation (33) can be solved looking for a separable-variable solution of the 
following form: 

( ) ( ), , , e .
i Kt

tψ θ ϕ θ ϕ= Ω                      (34) 

Then, substituting Equation (34) in Equation (33), results in the well-known 
equation for the spherical harmonic functions [1] [2] [3] [4] [5]: 

( ) ( )2
, , , 0.θ ϕ θ ϕ η θ ϕ∇ Ω + Ω =                   (35) 

With: 

( )
2

1
.V I

K
γ

η
+

=


                       (36) 

where K is the quasi-relativistic kinetic energy of the rotor. Consequently, the 
normalized solution of Equation (35) satisfying the appropriated boundary con-
ditions is given by the following expressions [1] [2] [3] [4] [5]: 

( ) ( ) ( ) ( ), , , ; 1 ; 0,1, 2, ; , 1, ,0,1, , .m
l m lY l l l m l l lθ ϕ θ ϕ ηΩ ∝ = + = = − − +    (37) 

where ( )m
lY  are the spherical harmonic functions [1] [2] [3] [4] [5]. Therefore, 

the quasi-relativistic kinetic energy is given by the following expression: 
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( ) ( ) ( ) ( )
2 2

2
  1 1 .

1 1
l l

l
V V C

hK l l l l
I mLγ γ

= + = +
+ +



           (38) 

where LC = 2πrS is the maximum length of a circle contained in the sphere where 
the particle moves. From Equation (37) follows that the spatial dependence of 
ψl,m coincide with the spatial dependence of the wavefunction calculated using 
the Schrödinger equation [5]. As expected, Equation (38) gives the know values 
of the particle’s energies at low speeds when γV ~ 1 [5]. From Equation (38) and 
the relativistic equation, ( ) 21VK mcγ= − , follow: 

( )2
2

1 1 .
l

C
V

C

l l
L
λ

γ
 

= + + 
 

                    (39) 

Equation (39) gives 2 3Vγ =  when l = 1 and LC = λC; evaluating for these val-
ues Equation (38) results in K1 ~ 0.7mc2, which is smaller than the value K1 ~ 
mc2 that would be obtained, using the Schrödinger equation, for the state with 
minimum non-zero angular momentum (l = 1) of a quantum rotor with LC = λC 
[5]. Moreover, this result is precise because the calculated energy (K1 ~ 0.7mc2) 
is quasi-relativistic. In contrast, Equation (39) gives 2 9Vγ =  when l = 1 and LC = 
λC/2; evaluating for these values Equation (38) results in K1 = 2mc2. The number 
of particles may not be constant at this energy. Consequently, Equation (3) also 
establishes the following fundamental connection between quantum mechanics 
and especial theory of relativity: there is a stable orbit with minimum length that 
a quantum particle of mass m, moving with constant non-zero speed in a sphere, 
can have. This length is equal to the Compton wavelength associated to the par-
ticle’s mass. Combining Equations (38) and (39) allow for rewritten Equation 
(38) in the following way: 

( )
( )

2

2

2

  1 .
1

1 1

l

C
C

C

hK l l
l l

mL
L

λ
= +
  +  + +     

            (40) 

When ( )1C CL l l λ+ , Equation (40) gives the know values of the energies 
calculated using the Schrödinger equation for a non-relativistic quantum rotor 
[5]. However, in general, the values of Kl calculated using Equation (40) are 
smaller than the ones calculated using the Schrödinger equation. Moreover, and 
more significant for experiments, the differences in energies between different 
energy levels are slightly different when obtained using Equations (1) and (3). 

7. Conclusion 

Relativistic quantum mechanics has evolved a lot since 1925, when Erwin 
Schrödinger played with the Klein-Gordon equation but decided not to publish 
what he found and then, settled for publishing his finding about the today fam-
ous Schrödinger equation. Nevertheless, the existence of the quasi-relativistic 
Schrödinger-like equation discussed here should be considered the discovery of 
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a hidden gem. At low particle’s speeds, the proposed Grave de Peralta equation 
(Equation (3)) clearly coincides with the Schrödinger equation. Equation (3) is 
Galilean invariant for observers traveling at low speeds respect to each other, 
and a positive probability density can be defined for this equation by analogy of 
how it is defined for the Schrödinger equation. The plane wave solutions of Eq-
uation (3) are subluminal and are related through Equation (5) with the plane 
wave solutions with positive energies of the Klein-Gordon equation. From a 
practical point of view Equation (3) has a clear scholastic value. Moreover, as it 
was shown in this work, Equation (3) can be used for obtaining precise qua-
si-relativistic solutions of very interesting problems at energies smaller than mc2. 
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Annex A: Lorentz or Galilean Invariance? 

It is well-known that Equation (10) is Lorentz invariant [7] [8] [9]. The 3D ver-
sion of Equation (10) can be rewritten in a covariant form in the following way 
[7] [8] [9]: 

2
2 2

2 , , , , .µ µ
µ x y z

E Ep p m c p p p p
cc

 = − ⋅ = =  
 

p p          (A1) 

Here covariance means that the module (pµpµ) of the four-component vector 
pµ is a scalar under Lorentz transformations because m2c2 is a scalar under the 
Lorentz transformations relating the coordinates {t, x, y, z}, respect to an inertial 
reference frame S, to the coordinates { }, , ,t x y z′ ′ ′ ′ , respect to a second inertial 
reference frame S’ which is moving with speed Vo respect to S in the positive di-
rection of the axis x [7] [8]: 

( )2 , , , .
o o

o
V V o

V
t t x x x V t y y z z

c
γ γ ′ ′ ′ ′ ′ ′= + = + = = 

 
        (A2) 

Equation (8) permits to associate a partial derivative operator to each compo-
nent of pµ, thus transforming Equation (A1) in the 3D version of Equation (2) 
[8] [9]: 

( ) ( )2 2ˆ ˆ , , , , , , ,

ˆ , , , .

KG KGp p x y x t m c x y x t

p i i i i
ct x y z

µ
µ

µ

ψ ψ=

 ∂ ∂ ∂ ∂
=  

∂ ∂ ∂ ∂ 
   

            (A3) 

The operator p̂µ  is a Lorentz-invariant four-component vector because 
ψKG(x, y, z, t), the wavefunction of a particle with spin-0, must be a Lorentz-scalar 
[8] [9], and because the four quantities formed by differentiation of a Lo-
rentz-scalar respect to the components of a Lorentz-invariant four-vector trans-
form as a four-component Lorentz invariant vector [7]. Therefore, the left term 
of Equation (A3) transform under Lorentz transformations as the module of a 
four-component Lorentz-invariant vector; i.e., as a Lorentz-scalar. Consequently, 
provided that ψKG(x, y, z, t) is a scalar under Lorentz transformations, Equation 
(A3) is relativistic covariant; i.e., both sides of the equation transform under Lo-
rentz transformations as Lorentz-scalars. Equation (A3) can then be directly 
written in differential form in the same way in both S and S’ references frames: 

( ) ( ) ( )

( ) ( ) ( )

2 2 2
2

2 2 2

2 2 2
2

2 2 2

1 , , , ,

1 , , , .

KG KG KG

KG KG KG

m ct t t
c t

m ct t t
c t

ψ ψ ψ

ψ ψ ψ

∂
= ∇ −

∂
∂ ′ ′ ′ ′ ′ ′ ′= ∇ −
′∂

′ ′ ′





r r r

r r r
        (A4) 

where ( ), ,x y z=r  is a 3D spatial vector is rectangular coordinates. Evidently, 
Equation (A4) is a 3D version of Equation (2). Therefore, a 3D version of Equa-
tion (6) is a plane wave solution of Equation (A4), which is a Lorentz-scalar be-
cause the wave’s phase can be rewritten as the scalar product of two Lo-
rentz-invariant four-components vectors [7] [8] [9]: 
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( ) ( ) ( ) { }, e e , , , , .
i iEt p x

KG t x ct x y z
µ

µ µψ
⋅ − −

= = = 

p r
r          (A5) 

Therefore, ( ), ,,KG x z tyψ ′ ′ ′′ ′  is the boosted wavefunction: 

( ) ( )
, ,, e .

i E t

KG x y z tψ
′ ′ ′ ′⋅ −

′ ′ =′ ′ ′ 

p r
                 (A6) 

In other words, ( ), ,,KG x z tyψ ′ ′ ′′ ′  can be obtained from ψKG(x, y, z, t) by 
making the formal substitutions x → x(x', t'), y → y', z → z', and t → t(x', t') using 
Equation (A2). In addition, the linear momentum and total energy of the par-
ticle should be boosted by substituting p → p' and E → E'. This ends the discus-
sion about the Lorentz invariance of the Klein-Gordon equation. One can then 
try to demonstrate the relativistic covariance of Equation (3) following similar 
steps than for the demonstration of the relativistic covariance of the Klein-Gordon 
equation. Looking for a solution of the 3D version of Equation (3): 

( ) ( ) ( )
2

2, , ,
1V

i t t
t m
ψ ψ

γ
∂

= − ∇
∂ +



 r r               (A7) 

Such that: 

( ) ( ) ( ) ( ),, e , e ,
i iKt K tttψ ψ

′ ′ ′ ′⋅ − ⋅ −′ ′′= = 

p r p rrr              (A8) 

Would require that: 

( ) ( ) ( ) { }, e e , , , , .
i iKt x

t x ct x y z
µ

µβ µψ
⋅ − −

= = = 

p r
r           (A9) 

But Equation (A9) would imply the following relation between K and p: 
2

2 2 2
2 0, , , , , .x y z

K Kp p p p K p c
cc

µ µ
µβ β  = − ⋅ = = = 

 
p p     (A10) 

This relation is only correct for relativistic massless particles (photons). For a 
particle with non-zero mass, the correct relativistic relation between K and p is 
given by Equation (9). This demonstrates that Equations (3) and A(7) are not 
Lorentz invariant. Qualitative arguments about the Galilean invariance of Equa-
tion (3) were given in Section 3; therefore, one should expect that Equation (3) is 
approximately Galileo invariant when the observers move respect to each other 
at much smaller speeds than the quasi-relativistic speed of the particle. One can 
then try to demonstrate the Galilean invariance of Equation (3) following similar 
steps than for the demonstration of the Galilean invariance of the Schrödinger 
equation [6]. Consequently, when oV V  and K ~ mc2, if an observer at rest 
respect to S’ find that: 

( ) ( )
, e ,

i p x K t
x tψ

′ ′ ′ ′−
′ ′ ′ =                      (A11) 

Is a solution of the equation: 

( ) ( ) ( )
2 2

2, , .
1V

i x t x t
t m x
ψ ψ

γ ′

∂ ∂′ ′ ′ ′ ′ ′= −
′ ′∂ + ∂




           (A12) 

Then, if Equation (A12) is Galilean invariant, an observer at rest respect to S 
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should be able to find that the following plane wave: 

( ) ( ) ( ) ( ) ( ), ,, , e e e ,
i p x K ti x t i x tx t x t ε εψ ψ

′ ′ ′ ′−
′ ′ ′= =             (A13) 

Is a solution of Equation (3) [6]. In Equation (A13), ( ),x tψ ′ ′ ′  should be ex-
plicitly rewritten as ( ),x tψ ′  by substituting the variables x', t' by the variables 
x, t using the Galileo transformations [6]: 

, .ot t x x V t′ ′ ′= = +                      (A14) 

In Equation (A13), ε(x, t) have a double function. First, it should make ψ(x, t) 
a Galilean boosted version of ( ),x tψ ′ ′ ′ , i.e.: 

( ) ( ) ( ) ( ),, e e e .o
i ip x V t K t px Kti x tx t εψ

′ ′ − − − = =              (A15) 

The equation in the variables x and t that results, after using Equation (A14) 
for transforming the differential operators of Equation (A12), do not need to be 
equal to Equation (3). Therefore, the second function of ε(x, t) is to guarantee 
that ψ(x, t) given by Equations (A13) and (A15) satisfies Equation (3). If there is 
a function ε(x, t) satisfying these two requirements, then ψ(x, t) and ( ),x tψ ′ ′ ′  
both satisfy the same equation and both have equal square module values; 
therefore, both described the same physical reality [6]. i.e., Equation (3) would 
be Galilean invariant. It can be shown that for the Schrödinger equation, εSch(x, 
t) is given by the following equation [6]: 

( ) 21 1, .
2Sch o ox t mV x mV tε  = − 

 

               (A16) 

Therefore, ψSch(x, t) is a boosted version of ( ),Sch x tψ ′ ′′  because for a 
non-relativistic particle: 

( ) ( )

( )

( ) ( )

( )

2
2

2

2

,

1 1
2 2

2

.
2

Sch

o o o

o
o

i p x K t x t

i pp x V t t mV x mV t
m

p mVi p mV x t
m

i p ipx t px Kt
m

ε′ ′ ′ ′− +

 ′  ′= − − + −   
  

 ′ +
′ = + −

  
 

= − = − 
 



 



 

          (A17) 

In addition ψSch(x, t) satisfies Equation (1) [6]. What follows is the demonstra-
tion that Equation (3) is approximately Galileo invariant when oV V , and K 
~ mc2. One should find a function ε(x, t) for Equation (A12) that satisfies the 
two requirements discussed above. First, using the Galilean relations given by 
Equation (A14), the differential operators in the variables x' and t' in Equation 
(A12) transform to the following differential operators in the variables x and t 
[6]: 

, .o
t x t t xV

t t t t x t x x x t x x x
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + = + = + =
′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

    (A18) 

https://doi.org/10.4236/jmp.2020.112012


L. Grave de Peralta 
 

 
DOI: 10.4236/jmp.2020.112012 212 Journal of Modern Physics 
 

After transforming Equation (A12) using Equation (A18) and making γV’ ~ γV 
because oV V , and K ~ mc2, one can propose: 

( ) ( ) ( ),, , e .i x tx t x t εψ ψ ′=                    (A19) 

where ( ),x tψ ′  is ( ),x tψ ′ ′ ′ , i.e., a solution of Equation (A12), after making the 
substitution x' → x'(x, t), and t' → t using Equation (A14). Then one can substi-
tute ψ(x, t) given by Equation (A19) in the equation that results after transform-
ing Equation (A12) using Equation (A18). This permits finding out that ε(x, t) 
must satisfy the following conditions provided ψ(x, t) is a solution of Equation 
(3): 

( ) ( )

22

2

2 0.
1 1o o

V V

V V
m x m x x tx

ε ε ε ε ε
γ γ

∂ ∂ ∂ ∂ ∂ − = = − − = + ∂ + ∂ ∂ ∂∂  

      (A20) 

These conditions are very similar to the ones corresponding to the Schrödin-
ger equation [6]. The three conditions given by Equation (A20) determine that 
ε(x, t) is given by the following expression: 

( ) ( ) ( ) 21 1 1, 1 1 .
2 4V o V ox t mV x mV tε γ γ = + − +  

          (A21) 

Comparing Equations (A16) and (A21), one realizes that both include a linear 
momentum term and a kinetic energy term. Equation (A16) includes the  
non-relativistic expressions po = mVo and ( )2 2o oK p m= . Equation (A24) in-

cludes the relativistic expressions ( )1 1
2r v op mVγ= +  and ( )2~ 1r r vK p mγ +  .  

This is because the Schrödinger equation describes a non-relativistic particle but 
Equation (3) describes a particle moving at quasi-relativistic speeds. Finally, one 
should check if ε(x, t) given by Equation (A21) transforms ψ(x, t) in a Galilean 
boosted version of ( ),x tψ ′ ′ ′ . i.e., one should check if: 

( ) ( ) ( ) ( )
2 2

       
1 1,e e e .

o
V V

i p i pp x V t t px t
m mi x tγ γε

   ′
′ − − −   

+ +      ≈              (A22) 

But: 

( ) ( ) ( ) ( )

( )
( )

( )

2
2

2

1 1 11 1
1 2 4

1 1
1 21 .
2 1

o V o V o
V

V o

V o
V

i pp x V t t mV x mV t
m

p mV
i p mV x t

m

γ γ
γ

γ
γ

γ

 ′  ′ − − + + − +   +    
  ′ + +      ′= + + −   +  
  

 



  (A23) 

When oV V , and K ~ mc2, then ( )~ 1v rp mV pγ′ +   and  
~ ~rp p p p′ ′+ . Therefore, Equation (A23) can be approximated to the fol-

lowing expression: 

( ) ( )
2

.
1V

i p ipx t px Kt
mγ

 
= − = − 

+   

             (A24) 
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Consequently, Equation (3) is Galilean invariant for observers that move at 
constant but small speed respect to each other. Nevertheless, the Grave de Peral-
ta equation describes a massive free quantum particle moving at quasi-relativistic 
speeds. 
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